Гармонические колебания синусоида. Колебания

Гармонические колебания

Графики функций f (x ) = sin(x ) и g (x ) = cos(x ) на декартовой плоскости.

Гармоническое колебание - колебания, при которых физическая (или любая другая) величина изменяется с течением времени по синусоидальному или косинусоидальному закону. Кинематическое уравнение гармонических колебаний имеет вид

,

где х - смещение (отклонение) колеблющейся точки от положения равновесия в момент времени t; А - амплитуда колебаний, это величина, определяющая максимальное отклонение колеблющейся точки от положения равновесия; ω - циклическая частота, величина, показывающая число полных колебаний происходящих в течение 2π секунд - полная фаза колебаний, - начальная фаза колебаний.

Обобщенное гармоническое колебание в дифференциальном виде

(Любое нетривиальное решение этого дифференциального уравнения - есть гармоническое колебание с циклической частотой )

Виды колебаний

Эволюция во времени перемещения, скорости и ускорения при гармоническом движении

  • Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия. Чтобы свободные колебания были гармоническими, необходимо, чтобы колебательная система была линейной (описывалась линейными уравнениями движения), и в ней отсутствовала диссипация энергии (последняя вызвала бы затухание).
  • Вынужденные колебания совершаются под воздействием внешней периодической силы. Чтобы они были гармоническими, достаточно чтобы колебательная система была линейной (описывалась линейными уравнениями движения), а внешняя сила сама менялась со временем как гармоническое колебание (то есть чтобы зависимость от времени этой силы была синусоидальной).

Применение

Гармонические колебания выделяются из всех остальных видов колебаний по следующим причинам:

См. также

Примечания

Литература

  • Физика. Элементарный учебник физики / Под ред. Г. С. Лансберга. - 3 изд. - М ., 1962. - Т. 3.
  • Хайкин С. Э. Физические основы механики. - М ., 1963.
  • А. М. Афонин. Физические основы механики. - Изд. МГТУ им. Баумана, 2006.
  • Горелик Г. С. Колебания и волны. Введение в акустику, радиофизику и оптику. - М .: Физматлит, 1959. - 572 с.

Wikimedia Foundation . 2010 .

Смотреть что такое "Гармонические колебания" в других словарях:

    Современная энциклопедия

    Гармонические колебания - ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ, периодические изменения физической величины, происходящие по закону синуса. Графически гармонические колебания изображаются кривой синусоидой. Гармонические колебания простейший вид периодических движений, характеризуется … Иллюстрированный энциклопедический словарь

    Колебания, при которых физическая величина изменяется с течением времени по закону синуса или косинуса. Графически Г. к. изображаются кривой синусоидой или косинусоидой (см. рис.); они могут быть записаны в форме: х = Asin (ωt + φ) или х … Большая советская энциклопедия

    ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ, периодическое движение, такое как движение МАЯТНИКА, атомные колебания или колебания в электрической цепи. Тело совершает незатухающие гармонические колебания, когда оно колеблется вдоль линии, перемещаясь на одинаковое… … Научно-технический энциклопедический словарь

    Колебания, при к рых физ. (или любая другая) величина изменяется с течением времени по синусоидальному закону: x=Asin(wt+j), где x значение колеблющейся величины в данный. момент времени t (для механич. Г. к., напр., смещение или скорость, для… … Физическая энциклопедия

    гармонические колебания - Механические колебания, при которых обобщенная координата и (или) обобщенная скорость изменяются пропорционально синусу с аргументом, линейно зависящим от времени. [Сборник рекомендуемых терминов. Выпуск 106. Механические колебания. Академия наук … Справочник технического переводчика

    Колебания, при к рых физ. (или любая другая) величина изменяется во времени по синусоидальному закону, где х значение колеблющейся величины в момент времени t (для механич. Г. к., напр., смещение и скорость, для электрич. напряжение и сила тока) … Физическая энциклопедия

    ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ - (см.), при которых физ. величина изменяется с течением времени по закону синуса или косинуса (напр. изменения (см.) и скорости при колебании (см.) или изменения (см.) и силы тока при электрических Г. к.) … Большая политехническая энциклопедия

    Характеризуются изменением колеблющейся величины x (напр., отклонения маятника от положения равновесия, напряжения в цепи переменного тока и т. д.) во времени t по закону: x = Asin (?t + ?), где А амплитуда гармонических колебаний, ? угловая… … Большой Энциклопедический словарь

    Гармонические колебания - 19. Гармонические колебания Колебания, при которых значения колеблющейся величины изменяются во времени по закону Источник … Словарь-справочник терминов нормативно-технической документации

    Периодич. колебания, при к рых изменение во времени физ. величины происходит по закону синуса или косинуса (см. рис.): s = Аsin(wt+ф0), где s отклонение колеблющейся величины от её ср. (равновесного) значения, А=const амплитуда, w= const круговая … Большой энциклопедический политехнический словарь

1.Определение колебательного движения

Колебательное движение - это движение, точно или приблизительно повторяющееся через одинаковые промежутки времени. Учение о колебательном движении в физике выделяют особо. Это обусловлено общностью закономерностей колебательного движения различной природы и методов его исследования. Механические, акустические, электромагнитные колебания и волны рассматриваются с единой точки зрения. Колебательное движение свойственно всем явлениям природы. Внутри любого живого организма непрерывно происходят ритмично повторяющиеся процессы, например биение сердца.

Механические колебания Колебания - это любой физический процесс, характери­зующийся повторяемостью во времени.

Волнение моря, качание маятника часов, вибрации корпуса корабля, биение человеческого сердца, звук, радиоволны, свет, переменные токи - все это коле­бания.

В процессе колебаний значения физических величин, опреде­ляющих состояние системы, через равные или неравные проме­жутки времени повторяются. Колебания называются периодическими , если значения изме­няющихся физических величин повторяются через равные проме­жутки времени.

Наименьший промежуток времени Т, черезкото­рый значение изменяющейся физической величины повторяется (по величине и направлению, если эта величина векторная, по величине и знаку, если она скалярная), называетсяпериодом колебаний.

Число полных колебаний n , совершаемых за единицу времени, называется частотой колебаний этой величины и обозначается через ν . Период и частота колебаний связаны соотноше­нием:

Любое колебание обусловлено тем или иным воздействием на колеблющуюся систему. В зависимости от характера воздействия, вызывающего колебания, различают следующие виды периодических колебаний: свободные, вынужденные, автоколебания, параметри­ческие.

Свободные колебания - это колебания, происходящие в систе­ме, предоставленной самой себе, после выведения ее из состояния устойчивого равновесия (например, колебания груза на пружине).

Вынужденные колебания - это колебания, обусловленные внешним периодическим воздействием (например, электромагнит­ные колебания в антенне телевизора).

Механические колебания

Автоколебания - свободные колебания, поддерживаемые внеш­ним источником энергии, включение которого в нужные моменты времени осуществляет сама колеблющаяся система (например, колебания маятника часов).

Параметрические колебания - это колебания, в процессе которых происходит периодическое изменение какого-либо параметра системы (например, раскачивание качелей: приседая в крайних положениях и выпрямляясь в среднем положении, человек, находящийся на качелях, изменяет момент инерции качелей).

Различные по своей природе колебания обнаруживают много общего: они подчиняются одним и тем же закономерностям, описываются одними и теми же уравнениями, исследуются одними и теми же методами. Это дает возможность создать единую теорию колебаний.

Простейшими из периодических колебаний

являются гармонические колебания.

Гармонические колебания- это колебания, в процессе совершения которых значения физических величин изменяются с течением времени по закону синуса или косинуса. Большинство колебательных процессов описываются этим законом или может быть приставлено в виде суммы гармонических колебаний.

Возможно и другое «динамическое» определение гармонических колебании как процесса, совершаемого под действием упругой или «квазиупругой»

2. Периодическими называются колебания, при которых происходит точное повторение процесса через равные промежутки времени.

Периодом периодических колебаний называется минимальное время, через которое система возвращается в первоначальное

х - колеблющаяся величина (например, сила тока в цепи, состояние и начинается повторение процесса. Процесс, происходящий за один период колебаний, называется «одно полное колебание».

периодических колебаний называется число полных колебаний за единицу времени (1 секунду) - это может быть не целое число.

Т - период колебаний Период - время одного полного колебания.

Чтобы вычислить частоту v, надо разделить 1 секунду на время Т одного колебания (в секундах) и получится число колебаний за 1 секунду или координата точки) t - время

Гармоническое колебание

Это периодическое колебание, при котором координата, скорость, ускорение, характеризующие движение, изменяются по закону синуса или косинуса.

График гармонического колебания

График устанавливает зависимость смещения тела со временем. Установим к пружинному маятнику карандаш, за маятником бумажную ленту, которая равномерно перемещается. Или математический маятник заставим оставлять след. На бумаге отобразится график движения.

Графиком гармонического колебания является синусоида (или косинусоида). По графику колебаний можно определить все характеристики колебательного движения.

Уравнение гармонического колебания

Уравнение гармонического колебания устанавливает зависимость координаты тела от времени

График косинуса в начальный момент имеет максимальное значение, а график синуса имеет в начальный момент нулевое значение. Если колебание начинаем исследовать из положения равновесия, то колебание будет повторять синусоиду. Если колебание начинаем рассматривать из положения максимального отклонения, то колебание опишет косинус. Или такое колебание можно описать формулой синуса с начальной фазой .

Изменение скорости и ускорения при гармоническом колебании

Не только координата тела изменяется со временем по закону синуса или косинуса. Но и такие величины, каксила, скорость и ускорение, тоже изменяются аналогично. Сила и ускорение максимальные, когда колеблющееся тело находится в крайних положениях, где смещение максимально, и равны нулю, когда тело проходит через положение равновесия. Скорость, наоборот, в крайних положениях равна нулю, а при прохождении телом положения равновесия - достигает максимального значения.

Если колебание описывать по закону косинуса

Если колебание описывать по закону синуса

Максимальные значения скорости и ускорения

Проанализировав уравнения зависимости v(t) и a(t), можно догадаться, что максимальные значения скорость и ускорение принимают в том случае, когда тригонометрический множитель равен 1 или -1. Определяются по формуле

Как получить зависимости v(t) и a(t)

ГАРМОНИЧЕСКОЕ КОЛЕБАТЕЛЬНОЕ ДВИЖЕНИЕ

§1 Кинематика гармонического колебания

Процессы, повторяющиеся во времени называются колебаниями.

В зависимости от природы колебательного процесса и механизма возбуждения бывают: механические колебания (колебания маятников, струн, зданий, земной поверхности и т.д.); электромагнитные колебания (колебания переменного тока, колебания векторов и в электромагнитной волне и т.д.); электромеханические колебания (колебания мембраны телефона, диффузора громкоговорителя и др.); колебания ядер и молекул в результате теплового движения в атомах.

Рассмотрим отрезок [ОД] (радиус-вектор), совершающий вращательное движение вокруг точки 0. Длина |ОД| = A . Вращение происходит с постоянной угловой скоростью ω 0 . Тогда угол φ между радиус-вектором и осью x меняется со временем по закону

где φ 0 - угол между [ОД] и осью х в момент времени t = 0. Проекция отрезка [ОД] на ось х в момент времени t = 0

а в произвольный момент времени

(1)

Таким образом, проекция отрезка [ОД] на ось х совершает колебания, происходящие вдоль оси х , и эти колебания описываются законом косинуса (формула (1)).

Колебания, которые описываются законом косинуса

или синуса

называется гармоническими .

Гармонические колебания являются периодическими , т.к. значение величины х (и у) повторяется через равные промежутки времени.

Если отрезок [ОД] находится з низшем положении по рисунку, т.е. точка Д совпадает с точкой Р , то его проекция на ось х равна нулю. Назовем такое положение отрезка [ОД] положением равновесия. Тогда можно сказать, что величина х описывает смещение колеблющейся точки из положения равновесия. Максимальное смещение от положения равновесия называется амплитудой колебания

Величина

которая стоит под знаком косинуса называется фазой. Фаза определяет смещение от положения равновесия в произвольный момент времени t . Фаза в начальный момент времени t = 0 , равная φ 0 называется начальной фазой.

Т

Промежуток времени, за который совершается одно полное колебание, называется периодом колебаний Т . Число колебаний в единицу времени называется частотой колебаний ν.

Через промежуток времени, равный периоду Т , т.е. при увеличении аргумента косинуса на ω 0 Т , движение повторяется, и косинус принимает прежнее значение

т.к. период косинуса равен 2π , то, следовательно, ω 0 Т = 2π

таким образом, ω 0 - это число колебаний тела за 2π секунд. ω 0 - циклическая или круговая частота .

рисунок гармонического колебания

А - амплитуда, Т - период, х - смещение, t - время.

Скорость колеблющейся точки найдем, продифференцировав уравне-ние смещения х (t ) по времени

т.е. скорость v отличается по фазе от смещения х на π /2.

Ускорение - первая производная от скорости (вторая производная от смещения) по времени

т.е. ускорение а отличается от смещения по фазе на π.


Построим график х( t ) , у( t ) и а( t ) в одной смете координат (для простоты примем φ 0 = 0 и ω 0 = 1)

Свободными или собственными называются колебания, которые происходят в системе предоставленной самой себе после того, как она была выведена из положения равновесия.

Простейшим видом колебаний являются гармонические колебания - колебания, при которых смещение колеблющейся точки от положения равновесия изменяется с течением времени по закону синуса или косинуса.

Так, при равномерном вращении шарика по окружности его проекция (тень в параллельных лучах света) совершает на вертикальном экране (рис. 13.2) гармо-ническое колебательное движение.

Смещение от положения равновесия при гармонических колебаниях описывается уравнением (его называют кинематическим законом гармонического движения) вида:

\(x = A \cos \Bigr(\frac{2 \pi}{T}t + \varphi_0 \Bigl)\) или \(x = A \sin \Bigr(\frac{2 \pi}{T}t + \varphi"_0 \Bigl)\)

где х - смешение - величина, характеризующая положение колеблющейся точки в момент времени t относительно положения равновесия и измеряемая расстоянием от положения равновесия до положения точки в заданный момент времени; А - амплитуда колебаний - максимальное смещение тела из положения равновесия; Т - период колебаний - время совершения одного полного колебания; т.е. наименьший промежуток времени, по истечении которого повторяются значения физических величин, характеризующих колебание; \(\varphi_0\) - начальная фаза; \(\varphi = \frac{2 \pi}{T}t + \varphi"_0\) - фаза колебании в момент времени t . Фаза колебаний - это аргумент периодической функции, который при заданной амплитуде колебаний определяет состояние колебательной системы (смещение, скорость, ускорение) тела в любой момент времени.

Если в начальный момент времени t 0 = 0 колеблющаяся точка максимально смещена от положения равновесия, то \(\varphi_0 = 0\), а смещение точки от положения равновесия изменяется по закону

\(x = A \cos \frac{2 \pi}{T}t.\)

Если колеблющаяся точка при t 0 = 0 находится в положении устойчивого равновесия, то смещение точки от положения равновесия изменяется по закону

\(x = A \sin \frac{2 \pi}{T}t.\)

Величину V , обратную периоду и равную числу полных колебаний, совершаемых за 1 с, называют частотой колебаний:

\(\nu = \frac{1}{T} \)(в СИ единицей частоты является герц, 1Гц = 1с -1).

Если за время t тело совершает N полных колебаний, то

\(T = \frac{t}{N} ; \nu = \frac{N}{t}.\)

Величину \(\omega = 2 \pi \nu = \frac{2 \pi}{T}\) , показывающую, сколько колебаний совершает тело за 2 \(\pi\) с , называют циклической (круговой) частотой.

Кинематический закон гармонического движения можно записать в виде:

\(x = A \cos(2\pi \nu t + \varphi_0), x = A \cos(\omega t + \varphi_0).\)

Графически зависимость смещения колеблющейся точки от времени изображается косинусоидой (или синусоидой).

На рисунке 13.3, а представлен график зависимости от времени смещения колеблющейся точки от положения равновесия для случая \(\varphi_0=0\), т.е. \(~x=A\cos \omega t.\)

Выясним, как изменяется скорость колеблющейся точки со временем. Для этого найдем производную по времени от этого выражения:

\(\upsilon_x = x" A \sin \omega t = \omega A \cos \Bigr(\omega t + \frac{\pi}{2} \Bigl) ,\)

где \(~\omega A = |\upsilon_x|_m\)- амплитуда проекции скорости на ось х .

Эта формула показывает, что при гармонических колебаниях проекция скорости тела на ось х изменяется тоже по  гармоническому закону с той же частотой, с другой амплитудой и опережает по фазе смешение на \(\frac{\pi}{2}\) (рис. 13.3, б).

Для выяснения зависимости ускорения a x (t) найдем производную по времени от проекции скорости:

\(~ a_x = \upsilon_x" = -\omega^2 A \cos \omega t = \omega^2 \cos(\omega t + \pi),\)

где \(~\omega^2 A = |a_x|_m\) - амплитуда проекции ускорения на ось х.

При гармонических колебаниях проекция ускорения опережает смещение по фазе на к (рис. 13,3, в).

Аналогично можно построить графики зависимостей \(~x(t), \upsilon_x (t)\) и \(~a_x(t),\) если \(~x = A \sin \omega t\) при \(\varphi_0=0.\)

Учитывая, что \(A \cos \omega t = x\), формулу для ускорения можно записать

\(~a_x = - \omega^2 x,\)

т.е. при гармонических колебаниях проекция ускорения прямо пропорциональна смещению и противоположна ему по знаку, т.е. ускорение направлено в сторону, противоположную смещению.

Так, проекция ускорения - это вторая производная от смещения а x =х" " , то полученное соотношение можно записать в виде:

\(~a_x + \omega^2 x = 0\) или \(~x"" + \omega^2 x = 0.\)

Последнее равенство называют уравнением гармонических колебаний.

Физическую систему, в которой могут существовать гармонические колебания, называют гармоническим осциллятором, а уравнение гармонических колебаний - уравнением гармонического осциллятора.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - С. 368-370.

Колебаниями называются движения или процессы, которые характеризуются определенной повторяемостью во времени. Колебания широко распространены в окружающем мире и могут иметь самую различную природу. Это могут быть механические (маятник), электромагнитные (колебательный контур) и другие виды колебаний.
Свободными , или собственными колебаниями, называются колебания, которые происходят в системе предоставленной самой себе, после того как она была выведена внешним воздействием из состояния равновесия. Примером могут служить колебания шарика, подвешенного на нити.

Особую роль в колебательных процессах имеет простейший вид колебаний - гармонические колебания. Гармонические колебания лежат в основе единого подхода при изучении колебаний различной природы, так как колебания, встречающиеся в природе и технике, часто близки к гармоническим, а периодические процессы иной формы можно представить как наложение гармонических колебаний.

Гармоническими колебаниями называются такие колебания, при которых колеблющаяся величина меняется от времени по закону синуса или косинуса .

Уравнение гармонических колебаний имеет вид:

где A - амплитуда колебаний (величина наибольшего отклонения системы от положения равновесия) ; - круговая (циклическая) частота. Периодически изменяющийся аргумент косинуса - называется фазой колебаний . Фаза колебаний определяет смещение колеблющейся величины от положения равновесия в данный момент времени t. Постоянная φ представляет собой значение фазы в момент времени t = 0 и называется начальной фазой колебания . Значение начальной фазы определяется выбором начала отсчета. Величина x может принимать значения, лежащие в пределах от -A до +A.

Промежуток времени T, через который повторяются определенные состояния колебательной системы, называется периодом колебаний . Косинус - периодическая функция с периодом 2π, поэтому за промежуток времени T, через который фаза колебаний получит приращение равное 2π, состояние системы, совершающей гармонические колебания, будет повторяться. Этот промежуток времени T называется периодом гармонических колебаний.

Период гармонических колебаний равен : T = 2π/ .

Число колебаний в единицу времени называется частотой колебаний ν.
Частота гармонических колебаний равна: ν = 1/T. Единица измерения частоты герц (Гц) - одно колебание в секунду.

Круговая частота = 2π/T = 2πν дает число колебаний за 2π секунд.

Графически гармонические колебания можно изображать в виде зависимости x от t (рис.1.1.А), так и методом вращающейся амплитуды (метод векторных диаграмм) (рис.1.1.Б).

Метод вращающейся амплитуды позволяет наглядно представить все параметры, входящие в уравнение гармонических колебаний. Действительно, если вектор амплитуды А расположен под углом φ к оси х (см. Рисунок 1.1. Б), то его проекция на ось х будет равна: x = Acos(φ). Угол φ и есть начальная фаза. Если вектор А привести во вращение с угловой скоростью , равной круговой частоте колебаний, то проекция конца вектора будет перемещаться по оси х и принимать значения, лежащие в пределах от -A до +A, причем координата этой проекции будет меняться со временем по закону:
.


Таким образом, длина вектора равна амплитуде гармонического колебания, направление вектора в начальный момент образует с осью x угол равный начальной фазе колебаний φ, а изменение угла направления от времени равно фазе гармонических колебаний. Время, за которое вектор амплитуды делает один полный оборот, равно периоду Т гармонических колебаний. Число оборотов вектора в секунду равно частоте колебаний ν.