Охотское море относится к водам тихого океана. Охотское море: ресурсы, описание, особенности и интересные факты

Между акваториями Японского и Берингова морей размещается Охотское море.

Этот водоем ограничивает территорию Японии и Российской Федерации и выступает важнейшей портовой точкой на карте нашей страны.

Раньше среди названий моря числились Ламское, Камчатское, а у японцев - Хоккай, т.е. Северное.

Берега Охотского моря

Этот водоем принято считать одним из самых масштабных и глубоких в России, а также самым прохладным дальневосточным морем. Площадь акватории - 1603 км 2 , а глубина - свыше 800 м в среднем. Максимальный показатель глубины представляет собой практически 4 тысячи метров. Береговая граница водоема достаточно ровная, вдоль нее проходит несколько заливов. Однако в северной части вод много скал и резких обрывов. Для территории этого моря совершенно нормальным явлением являются штормовые предупреждения.

От Тихого океана море отделено Курилами. Речь идет о 3 десятках небольших участков суши, которые находятся в сейсмоопасной зоне из-за обилия вулканов. Также воды Тихого океана и Охотского моря разделены Камчаткой и островом Хоккайдо. А самый крупный остров этой местности - Сахалин. Некоторые проливы водоема выступают условной границей с Японским морем. Среди самых крупных рек, впадающих в море, стоит отметить Амур, Большую, Пенжину, Охоту.

Города на Охотском море

К основным портам и городам Охотской акватории можно отнести:

  • Аян, Охотск и Магадан на материковой части суши;
  • Корсаков на острове Сахалин;
  • Северо-Курильск на Курильских островах.

Промыслы Охотского моря

(Частный промысел: ловля рыбы на берегу Охотского моря, которая разрешена только в открытый сезон рыбалки, но на определенные виды, например на краба, требуется разрешение, иначе это может считаться браконьерством )

Природные ресурсы данного северного моря весьма разнообразны. На территории водоема активно развивается рыболовство, производство лососевой икры и добыча морепродуктов. Известными обитателями этих краев являются горбуша, нерка, треска, кета, кижуч, камбала, чавыча, сельдь, крабы и кальмары, минтай, навага. Кроме того, на Шантарских островах ведется ограниченная охота на морских котиков. Сейчас также популярностью пользуется добыча моллюсков, морских ежей и ламинарии.

(Рыбацкое судно в Охотском море )

Промышленность в Охотском море начала развиваться с 90-х гг. В первую очередь, речь идет о судоремонтных фабриках и рыбообрабатывающих предприятиях на Сахалине. В районе Сахалина также осуществляется разработка углеводородного сырья. В настоящее время в акватории моря открыто 7 точек с залежами нефти, которые начали разрабатывать еще в 70-е гг. прошлого века.

Приливные явления в районе Курильской гряды

Приливы являются доминирующим фактором, определяющим динамику вод в проливах, и в значительной мере определяют изменения в вертикальной и горизонтальной структуре вод. Приливы в районе гряды, как и в Охотском море, формируются главным образом приливными волнами, распространяющимися из Тихого океана. Собственные приливные движения Охотского моря, обусловленные непосредственным воздействием приливообразующих сил пренебрежимо малы. Приливные волны в северо-западной части Тихого океана имеют преимущественно поступательный характер и движутся в юго-западном направлении вдоль Курильской гряды. Скорость перемещения приливных волн в океане при подходе к Курильской гряде достигает 25-40 узлов (12-20 м/с). Амплитуда приливных колебаний уровня в зоне гряды не превышает 1 м, а скорость приливных течений составляет около 10-15 см/с. В проливах фазовая скорость приливных волн уменьшается, а амплитуда приливных колебаний уровня увеличивается до 1,7-2,5 м. Здесь скорости приливных течений возрастают до 5 узлов (2,5 м/с) и более. Благодаря многократному отражению приливных волн от берегов Охотского моря в самих проливах имеют место сложные поступательно-стоячие волны. Приливные течения в проливах имеют выраженный реверсивный характер, что подтверждается измерениями течений на суточных станциях в проливах Буссоль, Фриза, Екатерины и других проливах. Горизонтальные орбиты приливных течений, как правило, близки по своей форме к прямым линиям, ориентированным вдоль проливов.

Ветровое волнение в прикурильском районе

В летний период как с охотоморской, так и с океанской стороны Курильских островов крупные волны (высота 5,0 м и более) встречаются реже чем в 1% случаев. Повторяемость волн градаций 3,0–4,5 м составляет 1-2% с охотоморской стороны и 3-4% - с океанской. Для градации высот волн 2,0-2,5 м в Охотском море повторяемость составляет 28-31% , а со стороны Тихого океана - 32-33%. Для слабого волнения 1,5 м и менее с охотоморской стороны повторяемость составляет 68-70%, а со стороны океана - 63-65%. Преобладающее направление волнения в прикурильской части Охотского моря - от юго-запада на юге района и центральных Курильских островов, до северо-запада - на севере района. С океанской стороны Курильских островов на юге преобладает юго-западное направление волнения, а на севере - с равной вероятностью наблюдается северо-западное и юго-восточное.

Осенью интенсивность циклонов резко возрастает, соответственно усиливаются скорости ветра, которые генерируют более крупные волны. В этот период вдоль охотоморского побережья островов волны высотой 5,0 м и более составляют 6-7% от общего числа высот волн, а с океанской стороны - 3-4%. Увеличивается повторяемость северо-западного, северо-восточного и юго-восточного направлений. Опасное волнение продуцируется циклонами (тайфунами) с давлением в центре менее 980 гПа и большими градиентами барического давления – 10-12 гПа на 1° широты. Обычно в сентябре тайфуны выходят в южную часть Охотского моря, перемещаясь вдоль Курильской гряды

Зимой интенсивность проходящих циклонов возрастает. Повторяемость волн высотой 5,0 м и более составляет в это время с охотоморской стороны 7-8%, а с океанской – 5-8%. Преобладает северо-западное направление волн и волнение соседних с ним румбов.

Весной интенсивность циклонов резко падает, значительно уменьшается их глубина и радиус действия. Повторяемость крупных волн на всей акватории составляет 1% и менее, а направление волнения меняется на юго-западное и северо-восточное.

Ледовые условия

В Курильских проливах в осенне-зимний период благодаря интенсивному приливному перемешиванию и поступлению более теплых вод из Тихого океана температура воды на поверхности не достигает отрицательных значений, необходимых для начала льдообразования. Однако постоянные и сильные ветры северных румбов в зимний период являются основной причиной дрейфа плавучих льдов в исследуемом районе. В суровые зимы плавучие льды выходят далеко за пределы своего среднего положения и достигают Курильских проливов. В январе отдельные языки плавучего льда в суровые по ледовитости годы выходят из Охотского моря в океан через пролив Екатерины, распространяясь на 30 - 40 миль в открытую часть океана. В феврале у Южных Курильских островов языки льда направляются к юго-западу, вдоль острова Хоккайдо, до мыса Эримо и далее на юг. Ширина ледового массива при этом может достигать 90 миль. Значительные ледовые массивы могут наблюдаться вдоль острова Онекотан. Ширина полосы льдов здесь может достигать 60 миль и более. В марте, в экстремально тяжелые годы, выход льдов в открытый океан из Охотского моря осуществляется из массива на юго-западе моря через все проливы, начиная от Крузенштерна и южнее. Языки льда, выходящие из проливов, стекают на юго-запад, вдоль Курильских островов, а затем - вдоль острова Хоккайдо, к мысу Эримо. Ширина ледового массива в различных его местах может достигать 90 миль. У восточного побережья полуострова Камчатка ширина ледового массива может достигать более 100 миль, а распространиться массив может до острова Онекотан. В апреле плавучие льды могут выходить через любой пролив Курильской гряды от пролива Крузенштерна и южнее, а ширина языков льда не превышает 30 миль.

Влияние атмосферной циркуляции на динамику вод

Особенностью атмосферных процессов прикурильского района, как и всего Охотского моря, является муссонный характер циркуляции атмосферы (рис. 2.3). Это - преобладание юго-восточных ветров в период летнего муссона и обратных направлений ветров - в зимний период. Интенсивность развития муссонов определяется развитием крупномасштабных атмосферных процессов, связанных с состоянием основных центров действия атмосферы, регулирующих атмосферную циркуляцию над морями Дальневосточного района. Выявлена достаточно тесная причинно-следственная связь между особенностями атмосферной циркуляции и изменчивостью интенсивности развития того или иного звена системы течений района Курильских островов, что, в свою очередь, в значительной мере определяет формирование температурного фона вод района.

CO – "циклоны над океаном"; OA – "охотско-алеутский" /

Характеристики течений Соя и Курильского в сентябре 1988-1993 гг. (1Св = 10 6 м 3 /с)

Наименование

Перенос вод в течении Соя на траверзе пролива Екатерины

Положение границы течения Соя

Пролив Екатерины

Пролив Фриза

Пролив Фриза

Остров Итуруп

Остров Итуруп

Остров Итуруп

D T, o C в точке

45 o 30"N, 147 o 30"E

Перенос вод в Курильском течении на траверзе пролива Буссоль

D T,°C в точке

45°00"N, 153°00"E

Приведенные данные о состоянии прикурильских течений в сентябре для периода с 1988 по 1993 гг. свидетельствует о межгодовой изменчивости характеристик системы этих течений.

В весенний период года, при преобладании охотско-алеутского типа атмосферной циркуляции, отмечено значительное проникновение течения Соя в Охотское море в последующем летнем сезоне и, как результат - формирование повышенного температурного фона акватории в южно-курильском районе. При преобладании в весенний период северо-западного типа атмосферной циркуляции в последующий летний сезон, напротив, имело место незначительное проникновение теплого течения Соя в Охотское море, большее развитие Курильского течения и формирование пониженного температурного фона акватории.

Главные особенности структуры и динамики вод прикурильского района

Структурные особенности вод прикурильского района Тихого океана связаны с Курильским течением, являющимся западным пограничным потоком в субполярной круговой циркуляции северной части Тихого океана. Течение прослеживается в водах западной модификации субарктической структуры, имеющей следующие характеристики водных масс :

1. Поверхностная водная масса (0-60 м); весной°С=2-3°, S‰=33,0‰; летом°С=8°, S‰=33,0‰.

2. Холодный промежуточный слой (60-200 м);°С min =0,3°, S‰=33,3‰ с ядром на глубине 75-125 м.

3. Теплый промежуточный слой (200-800 м);°С max =3,5°, S‰=34,1‰ с ядром на глубине 300-500 м.

4. Глубинная (800-3000 м);°С=1,7°, S‰=34,7‰.

5. Придонная (более 3000 м);°С=1,5°, S‰=34,7‰.

Тихоокеанские воды у северных проливов Курильской гряды значительно отличаются от вод района южных проливов. Воды Курильского течения, формирующиеся очень холодными и более опресненными водами восточного побережья п-ова Камчатка и тихоокеанскими водами, в зоне проливов Курильской гряды смешиваются с трансформированными охотоморскими водами. Далее, воды течения Ойясио формируются смесью охотоморских вод, трансформированных в проливах, и водами Курильского течения.

Генеральная схема циркуляции вод Охотского моря в общем представляет собой большой циклонический круговорот, который в северо-восточной части моря формируется поверхностными, промежуточными и глубинными тихоокеанскими водами, поступающими при водообмене через северные Курильские проливы. В результате водообмена через южные и центральные Курильские проливы эти воды частично проникают в Тихий океан и пополняют воды Курильского течения. Характерная для Охотского моря в целом циклоническая схема течений, обусловленная преобладающей циклонической атмосферной циркуляцией атмосферы над морем, корректируется в южной части моря сложным рельефом дна и локальными особенностями динамики вод зоны Курильских проливов. В районе южной котловины отмечается устойчивый антициклонический круговорот.

Структура вод Охотского моря, определяемая как охотоморская разновидность субарктической структуры вод, состоит из следующих водных масс :

1. Поверхностная водная масса (0-40 м) с температурой и соленостью около 2,5° и 32,5‰ в весенний период и соответственно 10-13° и 32,8‰ - в летний.

2. Холодная промежуточная водная масса (40-150 м), формирующаяся в Охотском море в зимнее время, с характеристиками ядра:°С min = -1,3°, S‰ =32,9‰ на глубине 100 м.

Вдоль Курильских островов в Охотском море наблюдается резкий “обрыв” ядра холодного промежуточного слоя с минимальной температурой ниже +1° на расстоянии 40-60 миль от побережья островов. “Обрыв” холодного промежуточного слоя свидетельствует о существовании выраженного фронтального раздела собственно охотоморских промежуточных вод и трансформированных вод в проливах при приливном вертикальном перемешивании. Фронтальный раздел ограничивает распространение пятна более холодных поверхностных вод на акватории вдоль Курильских островов. То есть холодный промежуточный слой в Охотском море не связан с таковым в Курило-Камчатском течении и определяется зимними температурными условиями района.

3. Переходная водная масса (150-600 м), формирующаяся в результате приливной трансформации верхнего слоя тихоокеанских и охотоморских вод в зоне Курильских проливов (Т°=1,5°, S‰ =33,7‰).

4. Глубинная водная масса (600-1300м), проявляющаяся в Охотском море в виде теплого промежуточного слоя:°С=2,3°, S‰ =34,3‰ на глубине 750-1000 м.

5. Водная масса южной котловины (более 1300 м) с характеристиками:°С=1,85, S‰ =34,7‰ .

В южной части Охотского моря поверхностная водная масса имеет три модификации. Первая модификация - низкосоленая (S‰ <32,5‰), центральная охотоморская формируется преимущественно при таянии льда и располагается до глубины 30 м в период с апреля по октябрь. Вторая - Восточно-Сахалинского течения, наблюдается в слое 0-50 м и характеризуется низкой температурой (<7°) и низкой соленостью (<32,0‰). Третья - теплых и соленых вод течения Соя, являющегося продолжением ветви Цусимского течения, распространяющегося вдоль охотоморского побережья о.Хоккайдо (в слое 0-70 м) от пролива Лаперуза до южных Курильских островов. С марта по май имеет место “предвестник” течения Соя (Т°=4-6°, S‰ =33,8-34,2‰), а с июня по ноябрь - собственно теплое течение Соя с более высокой температурой (до 14-17°) и более высокой соленостью (до 34,5‰).

Проливы Курильской гряды

В Курильском архипелаге длиной примерно 1200 км насчитывается 28 относительно больших островов и много мелких. Эти острова образуют Большую Курильскую гряду и Малую - расположенную вдоль океанской стороны Большой Курильской гряды в 60-ти км к юго-западу от последней. Суммарная ширина Курильских проливов около 500 км. Из общей суммы поперечных сечений проливов 43,3% приходится на пролив Буссоль (глубина порога 2318 м), 24,4% - на пролив Крузенштерна (глубина порога 1920 м), 9,2% - на пролив Фриза и 8,1% - на IV Курильский пролив. Однако глубина даже самого глубокого из Курильских проливов значительно меньше максимальной глубины прилегающих к Курильским островам районов Охотского моря (около 3000 м) и Тихого океана (более 3000 м). Поэтому Курильская гряда представляет собой естественный порог, отгораживающий впадину моря от океана. Вместе с тем, Курильские проливы являются именно той зоной, в которой происходит водообмен между указанными бассейнами. Эта зона имеет свои особенности гидрологического режима, отличающиеся от режима прилегающих глубоководных районов океана и моря. Особенности орографии и рельефа дна этой зоны оказывают корректирующее влияние на формирование структуры вод и проявление таких процессов, как приливы, приливное перемешивание, течения и др.

На основе обобщения данных многолетних наблюдений установлено, что в зоне проливов наблюдается более сложная, чем полагалось ранее, гидрологическая структура вод. Во-первых , трансформация вод в проливах проявляется не однозначно. Трансформированная структура вод, имеющая характерные признаки курильской разновидности субарктической структуры вод (характеризующейся отрицательными аномалиями температуры и положительными - солености на поверхности в теплое полугодие, более мощным холодным промежуточным слоем и более сглаженными экстремумами промежуточных водных масс, в том числе положительной аномалией минимальной температуры), наблюдается преимущественно на шельфе островов, где более выражено приливное перемешивание. На мелководье приливная трансформация приводит к формированию однородной по вертикали структуры вод. В глубоководных областях проливов наблюдаются хорошо стратифицированные воды. Во-вторых , сложность заключается в том, что для зоны Курильских проливов характерно наличие разномасштабных неоднородностей, формирующихся при вихреобразовании и фронтогенезе в процессе контакта струй прикурильских течений, происходящего на фоне приливного перемешивания. При этом, в структуре термохалинных полей происходит изменение положения границ и экстремумов промежуточных слоев. В областях вихрей, а также в областях стрежней течений, несущих и сохраняющих свои характеристики, наблюдается локализация однородных ядер минимальной температуры холодного промежуточного слоя. В-третьих , структура вод в зонах проливов корректируется изменчивостью водообмена в проливах. В каждом из основных Курильских проливов в различные годы, в зависимости от развития того или иного звена системы течений района, возможен либо преобладающий сток охотоморских вод, либо преобладающее питание тихоокеанскими водами, либо двусторонняя циркуляция вод.

IV Курильский пролив

IV Курильский пролив - один из основных северных проливов Курильской островной гряды. Поперечное сечение пролива - 17,38 км 2 , что составляет 8,1% от общей поперечной площади сечений всех Курильских проливов, глубина его - около 600 м. Топографической особенностью пролива является его открытость в сторону Охотского моря и наличие порога глубиной около 400м со стороны Тихого океана.

Термохалинная структура вод IV Курильского пролива

Водная

Весна (апрель-июнь)

Лето (июль-сентябрь)

Масса

Глубина,

Температура,
°С

Соленость, ‰

Глубина, м

Температура,
°С

Соленость, ‰

Поверхностная

0-30

2,5-4,0

32,4-3,2

0-20

5-10

32,2-33,1

Холодная промежуточная

40-200

ядро: 50-150

0,3-1,0

33,2-33,3

30-200

ядро: 50-150

0,5-1,0

33,2-33,3

Теплая промежуточная

200-1000

ядро: 350-400

33,8

200-1000

ядро: 350-400

33,8

Глубинная

> 1000

34,4

> 1000

34,4

Пролив

Поверхностная

0-20

2-2,5

32,7-33,3

0-10

32,5-33,2

Холодная промежуточная

40-600

75-100, 200-300

1,0-2,0

33,2-33,5

50-600

75-100, 200-300

1,0-1,3

33,2-33,5

Придонная

33,7-33,8

33,7-33,8

Поверхностная

0-40

2,3-3,0

33,1-33,3

0-20

32,8-33,2

Холодная промежуточная

50-600

ядро: 60-110

1,0-1,3

33,2-33,3

40-600

ядро: 60-110

0,6-1,0

33,2-33,3

Теплая промежуточная

600-1000

33,8

600-1000

33,8

Глубинная

> 1000

34,3

> 1000

34,3

Из-за сложного рельефа дна в проливе количество водных масс различно. На мелководье вертикальное перемешивание приводит к гомогенизации вод. В этих случая имеет место только поверхностная водная масса. Для основной части пролива, где глубина составляет 500-600 м, наблюдаются две водные массы - поверхностная и холодная промежуточная. На более глубоких станциях с охотоморской стороны, наблюдается и более теплая придонная водная масса. На некоторых станциях пролива наблюдается второй минимум температуры. Поскольку в проливе со стороны Тихого океана существует порог с глубинами около 400 м, то водообмен между Тихим океаном и Охотским морем практически осуществляется до глубины порога. То есть, тихоокеанские и охотоморские водные массы, располагающиеся на больших глубинах, не имеют контакта в зоне пролива.

Пролив Крузенштерна

Пролив Крузенштерна - один из наиболее крупных и глубоких проливов Курильской островной гряды. Площадь поперечного сечения пролива – 40,84 км 2 . Порог пролива, с глубинами 200-400 м расположен с его океанской стороны. В проливе имеется желоб с глубинами от 1200 м до 1990 м, через который может осуществляться водоо6мен глубинными водами между Тихим океаном и Охотским морем. Северо-восточную часть пролива занимает мелководье с глубинами менее 200 м. В отличие от других проливов Курильской гряды, система островов и проливов (проливы Надежды и Головнина), входящих по существу в пролив Крузенштерна, образована группой мелких островов и скал, ограниченной с юга островом Симушир и с севера островом Шиашкотан.

Термохалинная структура вод пролива Крузенштерна

Водная

Весна (апрель-июнь)

Лето (июль-сентябрь)

Масса

Глубина,

Температура,
°С

Соленость, ‰

Глубина,

Температура,
°С

Соленость, ‰

Прилегающий к проливу тихоокеанский район

Поверхностная

Холодная

Промежуточная

ядро: 75-100

ядро: 75-100

Промежуточная

ядро: 250-350

ядро: 250-350

Глубинная

Пролив

Поверхностная

Холодная

Промежуточная

ядро: 75-150

ядро: 75-150

Промежуточная

Глубинная

Прилегающий к проливу охотоморский район

Поверхностная

Холодная

Промежуточная

ядро: 75-150

ядро: 75-150

Промежуточная

Глубинная

Пролив Буссоль

Пролив Буссоль - самый глубоководный и широкий пролив Курильской гряды, расположенный в центральной ее части между островами Симушир и Уруп. Благодаря большим глубинам, площадь сечения его составляет почти половину (43,3%) от площади сечений всех проливов гряды и равна 83,83 км 2 . Подводный рельеф пролива отличается резкими перепадами глубин. В центральной части пролива имеется поднятие дна до глубины 515 м, которое расчленяется двумя желобами – западным, глубиной 1334 м и восточным - глубиной 2340 м. Наличие больших глубин в проливе создает более благоприятные условия для сохранения вертикальной стратификации вод и проникновению тихоокеанских вод в море на больших глубинах.

Термохалинная структура вод прилива Буссоль

Водная

Весна (апрель-июнь)

Лето (июль-сентябрь)

Масса

Глубина,

Температура,
°С

Соленость, ‰

Глубина,

Температура,
°С

Соленость, ‰

Прилегающий к проливу тихоокеанский район

Поверхностная

0-30

1,5-3,0

33,1-33,2

0-50

33,0-33,2

Холодная

Промежуточная

30-150

ядро: 50-75

1,0-1,2

33,2-33,8

50-150

ядро: 50-75

1,0-1,8

33,3

Теплая промежуточная

150-1000

34,1

200-900

34,0

Глубинная

> 1000

34,5

> 1000

34,5

Пролив

Поверхностная

0-10

1,5-2

33,1-33,4

0-20

33,1-33,4

Холодная промежуточная

10-600

ядро: 100-150

1,0-1,2

33,3-33,5

20-600

ядро: 200-300

1,0-1,5

33,6

Теплая промежуточная

600-1200

34,2

600-1200

34,2

Глубинная

> 1200

34,5

> 1200

34,5

Прилегающий к проливу охотоморский район

Поверхностная

0-20

1,8-2,0

33,0-33,2

0-30

4-10

32,7-33,0

Холодная промежуточная

20-400

ядро: 75-100

0,8-1,0

33,3-33,5

30-500

ядро: 150-250

0,5-1,0

33,5-33,6

Промежуточная

400-1200

34,3

500-1200

34,3

Глубинная

> 1200

34,5

> 1200

34,5

Пролив Фриза

Пролив Фриза - один из основных проливов южной части Курильской островной гряды. Пролив находится между островами Уруп и Итуруп. Поперечное сечение пролива составляет 17,85 км 2 , что составляет 9,2% от общей площади сечений всех проливов. Глубина пролива – около 600 м. С тихоокеанской стороны имеется порог с глубинами около 500 м.

Термохалинная структура вод пролива Фриза

Водная

Весна (апрель-июнь)

Лето (июль-сентябрь)

Масса

Глубина,

Температура,
°С

Соленость, ‰

Глубина,

Температура,
° С

Соленость, ‰

Прилегающий к проливу тихоокеанский район

Поверхностная

0-30

1,5-2,0

33,0-33,2

0-50

4-13

33,2-33,8

Холодная

Промежуточная

30-250

ядро: 50-75

1,0-1,2

33,2-33,0

50-250

ядро: 125-200

1,0-1,4

33,5

Промежуточная

250-1000

2,5-3,0

34,0-34,2

250-1000

2,5-3,0

34,0-34,2

Глубинная

> 1000

34,4

> 1000

34,4

Пролив

Поверхностная

0-20

1,5-2

33,0-33,2

0-30

4-14

33,2-33,7

Холодная

Промежуточная

20-500

1,0-1,3

33,7

30-500

ядро:100-200

33,7-34,0

Промежуточная

(придонная)

34,3

34,3

Прилегающий к проливу охотоморский район

Поверхностная

0-30

1,0-1,8

32,8-33,1

0-50

8-14

33,0-34,0

Холодная

Промежуточная

30-300

ядро: 75-100

0-0,7

33,1-33,3

50-400

ядро: 100-150

1,0-1,3

33,5-33,7

Промежуточная

300-1200

34,2

400-1000

34,2

Глубинная

> 1000

34,4

> 1000

34,4

Для значительной части пролива, где глубина составляет около 500 м, выделяются лишь две водные массы - поверхностная и холодная промежуточная. На более глубоких станциях, где наблюдаются зачатки верхней границы теплой промежуточной водной массы, из-за небольших глубин пролива (около 600 м) эта водная масса является придонной. Наличие порога со стороны Тихого океана препятствует проникновению вод хорошо выраженного в Тихом океане теплого промежуточного слоя. В связи с этим, теплый промежуточный слой в зоне пролива имеет сглаженные характеристики - более близкие к индексам теплого промежуточного слоя охотоморских вод. Из-за небольших глубин пролива глубинные охотоморские и тихоокеанские водные массы практически не имеют контакта в зоне пролива.

Особенности циркуляции вод связаны с межгодовой изменчивостью непериодических течений данного района, в частности, с изменчивостью интенсивности течения Соя. Как установлено в настоящее время, течение возникает в южной части Охотского моря в весенний период, усиливается и максимально распространяется летом и ослабевает в осенний период. При этом граница распространения течения зависит от его интенсивности и изменяется от года к году. В целом, пролив Фриза не является ни чисто стоковым, ни чисто питающим, хотя в отдельные годы может являться таковым.

Пролив Екатерины

Пролив расположен между островами Итуруп и Кунашир. Ширина пролива в узкости составляет 22 км, пороговая глубина 205 м, площадь поперечного сечения около 5 км 2 . С севера, со стороны Охотского моря подходит желоб с глубинами более 500 м, продолжением которого является глубоководная центральная часть пролива с глубинами более 300 м. Западная часть пролива приглубая, в восточной части пролива глубины к центру увеличиваются более плавно. На подступах к проливу со стороны океана глубины не превышают 200-250 м.

У охотоморского побережья острова Кунашир поверхностная водная масса слагается из более теплых вод течения Соя и поверхностных охотоморских вод соответствующей (в данном случае - летней) модификации. Первые придерживаются северного берега о-ва Кунашир, занимают обычно слой от поверхности до глубины 50-100 м. Вторые располагаются, обычно, мористее северной границы течения Соя и в случае неразвитости последнего приближаются к проливу Екатерины с севера. Их распространение по глубине редко превышает верхние 20-30 м. Вышеназванные обе поверхностные водные массы подпираются собственно охотоморскими водами, составляющими в летне-осенний период года холодный промежуточный слой.

С океанской стороны пролива Екатерины распространение поверхностных и подповерхностных водных масс всецело определяется Курильским течением, омывающим побережье острова Итуруп и берега малой Курильской гряды.

Термохалинные индексы и вертикальные границы водных масс

в проливе Екатерины

Структура

Поверхностная водная

масса

Холодная промежуточная водная масса

Температура,
°С

Соленость,

Границы,

Температура,
°С

Соленость,

Границы,

Курильская

33,2

Тихоокеанская

32,9

0-100

33,3

Воды Соя

14-16

33,5

0-75

Охотоморская

10-11

32,7

0-20

33,2

20-100

В фазы отлива в центральной части пролива выражен поток вод из Охотского моря в океан. Отливное течение усиливает адвекцию тепла с ветвью теплого течения Соя. У побережья скорость течения резко уменьшается и меняет направление, а в отдельных ситуациях у самого берега возникает приливное противотечение. В зонах резкого изменения скорости и направления течения обычно хорошо виден продольный фронт. Смена фаз приливного и отливного течения происходит не одновременно в связи с чем в определенные промежутки времени возникают достаточно сложные по конфигурации зоны дивергенции и конвергенции течений и появляются полосы сулоя.

Для горизонтального распределения температуры воды в проливе характерна пятнистая структура, которая, вероятно, является результатом взаимодействия непериодических течений, рельефа дна и приливных движений. “Очаги изолированной воды” не являются стабильными образованиями и порождаются действием несбалансированных сил.

Сезонная изменчивость циркуляции вод Курильских проливов

Результаты расчетов геострофичесих течений для района Курильской гряды, основанные на данных экспедиционных наблюдений, указывает на формирование двусторонней схемы течений в проливах. Поскольку на картину циркуляции вод конкретного пролива, наряду с приливными явлениями, существенным образом влияет динамика вод прилегающих районов моря и океана, наблюдается изменение баланса расходов в проливах, изменяется характер водообмена через конкретный пролив - преимущественно сточный или наоборот, вплоть до чисто сточного или питающего. Однако данные оценки дают лишь качественную картину, не позволяют судить о расходах через проливы, сезонной и межгодовой изменчивости водообмена.

С использованием математической квазигеострофической модели А.С.Васильева , проведен ряд численных экспериментов для зоны Курильских проливов, включающей в себя наиболее активный в динамическом отношении район Курильской островной дуги - пролив Фриза и пролив Буссоль с прилегающими акваториями. В качестве исходной информации использованы материалы экспедиционных исследований за 80-90 гг. в зоне Курильских проливов, а также имеющиеся архивные данные по температуре, солености на поверхности океана и реальные поля атмосферного давления. Расчеты проводились на равномерной сетке с шагом 10¢ по широте и долготе. Численные расчеты в исследуемом районе проведены с учетом преобладающих для каждого из четырех сезонов типов атмосферной циркуляции (рис. 2.3), для характерных месяцев, когда циркуляция вод максимально учитывает влияние сезонного атмосферного воздействия. Как правило, это последний месяц сезона.

Зима (декабрь-март ). Для зимнего периода при северо-западном (СЗ) типе атмосферной циркуляции циркуляция вод соответствует направлению переноса воздушных масс (в зоне южных Курильских проливов перенос с северо-востока). В проливе Буссоль наблюдается двусторонняя циркуляция с хорошо выраженным выносом охотоморских вод. В проливе Фриза - преимущественный вынос охотоморских вод. При этом наблюдается одностороннее движение потоков вдоль островов по обе стороны пролива в южном направлении - и с морской, и с океанской стороны. Оценка интегральных расходов показывает, что пролив Фриза в зимний сезон при северо-западном типе атмосферной циркуляции является сточным проливом с максимальным выносом до 1,10 Св. При типовой атмосферной циркуляции циклоны над океаном (ЦО) схема циркуляции вод существенно корректируется - формируется двусторонняя циркуляция вод. В зоне же пролива Буссоль наблюдается "плотная упаковка" разнонаправленных вихревых образований.

Интегральный перенос вод в Курильских проливах (в Св) (Положительные значения – поступление тихоокеанских вод, отрицательные – вынос охотоморских вод)

Зима (март)

СЗ ЦО

Весна (июнь)

СЗ ОА

Лето (сентябрь)

СЗ ОА

Осень(ноябрь)

СЗ ЦО

Фриза

Буссоль

0- дно

Весна (апрель - июнь ). При северо-западном (СЗ) типе атмосферной циркуляции в зоне пролива Буссоль заметно увеличение числа разнонаправленных круговоротов. В районе западного желоба этого пролива с тихоокеанской стороны хорошо прослеживается циклонический круговорот, контактирующий с антициклоническим образованием далее в Тихом океане. В восточном желобе создаются условия двусторонней циркуляции, более явной, чем в зимний сезон. В проливе Фриза при данном типе атмосферной циркуляции сохраняется и несколько усиливается (до 1,80 Св) преимущественный вынос охотоморских вод в северо-западной части пролива. Другой тип атмосферной циркуляции, характерный также для этого периода - охотско-алеутский (ОА) (перенос воздушных масс в районе южных Курильских островов в направлении с юго - востока), значительно изменяет направление потоков вод, особенно в проливе Фриза. Течения здесь преимущественно направлены в Охотское море, т.е. наблюдается преобладающее поступление через пролив тихоокеанских вод. Баланс расходов через пролив показывает увеличение поступления вод (по сравнению с предыдущим типом атмосферной циркуляции) - от 0,10 Св до 1,10 Св. В районе пролива Буссоль формируется большое число разнонаправленных круговоротов.

Лето (июль - сентябрь ). При северо-западном типе атмосферной циркуляции в проливе Фриза формируется двустороннее направление движения вод (в отличие от предыдущих сезонов, когда при данном типе атмосферной циркуляции здесь наблюдался преимущественный сток охотоморских вод). В проливе Буссоль также отмечаются изменения в циркуляции вод. Поперек восточного желоба пролива проходит резкий фронтальный раздел между циклоническим круговоротом со стороны Охотского моря и антициклоническим образованием со стороны Тихого океана. При этом наблюдается преимущественный вынос охотоморских вод через центральную часть пролива. Оценки расходов через пролив показывают значительную величину стока охотоморских вод – до 9,70 Св, а при поступлении тихоокеанских вод - лишь 4,30 Св. Другой, характерный для летнего сезона охотско-алеутский тип атмосферной циркуляции, несколько корректирует схему циркуляции вод района. В проливе Буссоль формируется второй фронтальный раздел, изменяется ориентация фронтов - вдоль пролива, схема циркуляции усложняется. В центральной части пролива появляется поток тихоокеанских вод в Охотское море. Вынос охотоморских вод разделяется на два потока - через западный и восточный желоба пролива и баланс расходов через пролив уравновешивается (расходы составляют около 8 Св в том и другом направлении). В проливе Фриза при этом наблюдается хорошо выраженная двусторонняя схема течений.

Осень (октябрь-ноябрь ). Осенний период, как и весенний - время перестройки атмосферных процессов над северной частью Тихого океана. Увеличивается продолжительность действия северо-западного типа атмосферной циркуляции, а также вместо охотско-алеутского типа получает большее развитие тип "циклоны над океаном". Заметно существенное ослабление интенсивности циркуляции вод. При северо-западном типе атмосферной циркуляции схема течений в проливе Фриза сохраняет двустороннюю направленность (как и в летний период при данном типе атмосферной циркуляции). В проливе Буссоль схема циркуляции вод представлена вытянутым поперек пролива двух ядровым антициклоническим круговоротом, определяющем двустороннюю циркуляцию вод в каждом из желобов пролива. При типе атмосферной циркуляции "циклоны над океаном" для схемы циркуляции вод в проливе Буссоль отмечается вынос охотоморских вод в западном желобе пролива и двусторонняя циркуляция вод в антициклоническом круговороте в восточном желобе пролива.

Таким образом, по результатам модельных расчетов в проливе Фриза наблюдается преимущественный вынос охотоморских вод в зимний и весенний период при северо-западном типе атмосферной циркуляции, а также в зимний и осенний период при типовой синоптической ситуации "циклоны над океаном". Двусторонняя схема течений имеет место при северо-западном типе атмосферной циркуляции в летний и осенний периоды. Преимущественное поступление тихоокеанских вод наблюдается при охотско-алеутском типе в летний период. В проливе Буссоль преимущественный вынос охотоморских вод отмечается при северо-западном типе атмосферной циркуляции в летний период. Достаточно хорошо выраженная двусторонняя схема циркуляции вод в проливе формируется при северо-западном типе атмосферной циркуляции в зимний и весенний сезоны. При остальных типовых синоптических ситуациях циркуляция в проливе представлена потоками разносторонней направленности, обусловленными "плотной упаковкой" вихревых образований различной ориентации. Прослеживается сезонная изменчивость интенсификации циркуляции вод в проливах. От холодного периода полугодия к теплому величины переноса вод увеличиваются на порядок.

Гидрологическое районирование

Исследование гидрологических условий зоны Курильских проливов и прилегающих районов Тихого океана и Охотского моря выявило ряд сходных черт и особенностей формирования термохалинной структуры вод в каждом из районов.

Охотское море и часть Тихого океана у Курильских островов заполнены водами субарктической структуры - точнее охотоморской, тихоокеанской и курильской ее разновидностями. Каждая - весной, летом и осенью состоит из поверхностной водной массы, холодного и теплого промежуточных слоев и глубинных придонных вод.

В субарктической структуре всех трех разновидностей главными чертами являются: минимум температуры холодного промежуточного слоя и максимум температуры теплого промежуточного слоя. Однако, для каждой из разновидностей характерны свои особенности. Холодный промежуточный слой наиболее резко выражен в охотоморских водах. Температура в ядре холодного промежуточного слоя Охотского моря сохраняется отрицательной на большей части акватории в течение всего теплого периода года. В зоне охотоморского побережья Курильских островов наблюдается резкий “обрыв” холодного промежуточного слоя, оконтуренного изотермой +1°, связанного с хорошо выраженным здесь фронтальным разделом собственно охотоморских вод и трансформированных вод зоны Курильских проливов. Для курильской разновидности субарктической структуры вод в теплое полугодие характерны более низкие температуры и более высокие значения солености на поверхности относительно сопредельных вод моря и океана, расширение границ холодного промежуточного слоя и более сглаженные температурные экстремумы водных масс. В тихоокеанских же водах промежуточные слои достаточно хорошо выражены. В результате, со стороны Тихого океана, вдоль островов, Курильское течение, переносящее воды тихоокеанской субарктической структуры, создает контрасты термохалинных характеристик. Здесь формируется фронтальная зона, хорошо выраженная в поле температуры поверхностных и промежуточных вод.

Теплый промежуточный слой наиболее четко выражен в тихоокеанских водах. В охотоморских водах и в зоне проливов этот слой имеет более сглаженные характеристики. Это обстоятельство дает возможность идентифицировать данную водную массу как тихоокеанскую или как охотоморскую при исследовании водообмена через проливы.

Из-за особенностей топографии Курильских проливов глубинные охотоморские и тихоокеанские воды имеют контакт только в проливах Буссоль и Крузенштерна. При этом охотоморские глубинные воды холоднее тихоокеанских почти на 1° и имеют несколько меньшую соленость - на 0,02‰. Наиболее холодная вода (приносимая Восточно-Сахалинским течением в холодном промежуточном слое к южным и центральным Курильским проливам из мест формирования на шельфе Охотского моря), как и наиболее теплая (связанная с проникновением в поверхностном слое в южную часть Охотского моря теплых вод течения Соя), поступает в океан через пролив Екатерины и Фриза. В океане эти воды питают Курильское течение.

Исследования термохалинной структуры вод посредством анализа разрезов и карт термохалинных полей, а также анализа Т,S-кривых с учетом условий, формирующих эту структуру во всем районе в целом, позволили уточнить данное ранее разделение разновидностей субарктической структуры вод в районе Курильских островов и выделить ряд типов (или разновидностей) структуры с соответствующими индексами слагающих их водных масс.

Выделены следующие разновидности структуры вод :

  • тихоокеанский тип субарктической структуры - тихоокеанские воды, переносимые Курильским течением;
  • охотоморский тип - охотоморские воды, характеризующиеся особенно низкими минимальными температурами в холодном промежуточном слое и слабо развитым теплым промежуточным слоем;
  • тип южной части Охотского моря - охотоморские воды, отличающиеся высокими значениями термохалинных характеристик в поверхностном слое, связанными с проникновением вод течения Соя в южно-охотоморский район;
  • тип зоны Курильских проливов (курильская разновидность) – трансформированные воды, характеризующиеся отличающимися термохалинными характеристиками в поверхностном слое (более низкие значения температуры и более высокие - солености, относительно сопредельных вод моря и океана), более мощным по вертикали холодным промежуточным слоем и более сглаженными экстремумами водных масс;

  • тип зоны мелководий - воды, отличающиеся практически однородным вертикальным распределением термохалинных характеристик.

Типизация термохалинной структуры вод района Курильских островов

Весна (апрель-июнь)

Лето (июль-сентябрь)

1.Тихоокеанский тип

Поверхностная

Холодная

промежуточная

Теплая

промежуточная

ядро:250-350

ядро:250-350

Глубинная

Донная

2.Охотоморский тип

Поверхностная

Холодная

промежуточная

ядро: 75-100

Охотоморская

промежуточная

Теплая

промежуточная

Глубинная

3.Тип южной части Охотского моря

Поверхностная

Холодная

промежуточная

Теплая

промежуточная

Глубинная

4.Тип зоны Курильских проливов

Поверхностная

(IV Курильский)

(Крузенштерн)

(Буссоль)

Холодная

промежуточная

(IV Курильский)

(Крузенштерн)

(Буссоль)

ядро:100-150

Теплая

промежуточная

(IV Курильский)

(Крузенштерн)

(Буссоль)

Глубинная

(Крузенштерн) (Буссоль)

5.Тип зон мелководья

Однородные

Обозначения: (с*) - на траверзе IV Курильского пролива, (ю*) - пролива Буссоль.

Выделенные типы структуры вод разделяются фронтальными зонами различной интенсивности. Определены следующие фронты:

  • прибрежный фронт Курильского течения - зона взаимодействия 1-го и 4-го типов структуры вод (внутриструктурный Курильский фронт);
  • прикурильский фронт Охотского моря , прерывистый, связанный с водообменом между Охотским морем и прикурильским районом – зона взаимодействия 2-го и 4-го типов структуры вод. Здесь обнаружен “обрыв” холодного промежуточного слоя охотоморского типа структуры вод. Фронт особенно четко проявляется в промежуточных слоях. Он разделяет холодные воды холодного промежуточного слоя Охотского моря и аномально теплые воды холодного промежуточного слоя зоны Курильских проливов;
  • фронт течения Соя , связанный с вторжением более теплых и соленых вод течения Соя в поверхностном слое, наблюдаемых в южной части Охотского моря в структуре вод 3-го типа. Фронт является зоной контакта вод 2-го и 3-го типов структуры вод.
  • фронты в зонах Курильских проливов , связанные с циркуляцией вокруг островов, с разрывами 1-го или 2-го прикурильских фронтов при вторжении тихоокеанских, либо охотоморских вод в зоны проливов и происходящем при этом вихреобразовании;
  • фронты мелководных зон , возникающие при формировании 5-го типа структуры вод (разделяющие гомогенные воды мелководья и стратифицированные воды 1-го, 2-го, либо 4-го типов структур).

Картина гидрологического районирования акватории Курильских проливов с прилегающими зонами Охотского моря и Тихого океана, а также распространения выделенных типов структуры вод и положения фронтальных разделов - квазистационарна. Сложная динамика вод в районе Курильских островов, обусловленная изменчивостью интенсивности развития и характером взаимодействия прикурильских течений, определяет эволюцию фронтальных разделов. Фронты становятся неустойчивыми, что проявляется в виде образования меандров, вихрей и иных неоднородностей.

Для субарктической структуры вод в Тихом океане вертикальное распределение скорости звука имеет монотонный характер зимой и немонотонный летом. В теплый период года формируется термический тип звукового канала с выраженной асимметрией. Верхняя часть канала обусловлена наличием сезонного термоклина. Положение оси - минимумом температуры в холодном промежуточном слое. Дальнейшее повышение скорости звука с глубиной связано с увеличением температуры в теплом промежуточном слое и повышением гидростатического давления. При этом происходит формирование так называемого плоскослоистого волновода.

Поле скорости звука в водах тихоокеанской структуры неоднородно. В зоне минимальных значений скорости звука вдоль побережья островов выделяется область, отличающаяся особенно низкими ее значениями (до 1450 м/с). Эта область связана с потоком Курильского течения. Анализ вертикальных разрезов поля скорости звука и температуры показывает, что ось звукового канала, соответствующая положению ядра холодного промежуточного слоя, совпадает со стрежнем течения. На разрезах поля скорости звука, пересекающих поток течения, наблюдаются линзообразные области, оконтуренные изотахами минимальной скорости звука (также же как на температурных - линзообразные области минимальной температуры в ядре холодного промежуточного слоя). При пересечении Прибрежного фронта Курильского течения, где величина изменений температуры может доходить до 5° на расстоянии в несколько сотен метров, перепады значений скорости звука составляют 10 м/с.

В охотоморской структуре вод характерные для холодного промежуточного слоя отрицательные значения минимальной температуры обуславливают появление резко выраженного подводного звукового канала. При этом, также как для холодного промежуточного слоя, в поле скорости звука наблюдается “обрыв” плоскослоистого волновода при пересечении Прикурильского фронта Охотского моря. Пространственное распределение скорости звука весьма неоднородно. В распределении скорости звука на поверхности наблюдается уменьшение ее значений в направлении к шельфу островов. Пространственная картина поля скорости звука здесь усложняется из-за наличия разномасштабных неоднородностей термохалинных полей, связанных с наблюдающимся постоянным вихреобразованием. Здесь наблюдаются линзообразные области с более низкими ее значениями (с разницей до 5 м/с) по сравнению с окружающими водами.

В структуре южно-охотоморских вод, формирующейся при вторжении теплых более соленых вод течения Соя в поверхностном слое воды, профили скорости звука отличаются как величинами значений скорости звука, так и формой кривых вертикального распределения и положения экстремумов. Форма вертикальной кривой скорости звука здесь определяется не только температурным профилем, но и немонотонным вертикальным распределением солености, характеризующим структуру проникающих в южно-охотоморский район потоков вод течения Соя. Вертикальное распределение солености в поверхностном слое имеет максимум, препятствующий уменьшению значений скорости звука. В связи с этим, положение оси звукового канала наблюдается несколько глубже положения ядра холодного промежуточного слоя. Следовательно, в данном районе тип звукового канала перестает быть чисто термическим. Для южно-охотоморского типа структуры вод имеет место максимальный диапазон изменения величин скорости звука (от 1490-1500 м/с на поверхности, до 1449-1450 м/с на оси звукового канала).

В зоне проливов и по обе стороны Курильской гряды в результате приливного перемешивания формируется значительное количество фронтальных разделов различного масштаба. При фронтогенезе и вихреобразовании происходит изменение глубины положения сезонного термоклина и соответственно - тахоклина (иногда до выхода его на поверхность), изменяется положение ядра холодного промежуточного слоя, его границ и соответственно - оси звукового канала и его границ. Наиболее яркие особенности структуры поля скорости звука обнаружены в зонах стрежней течений в зоне проливов (как и в районах прилегающих к островам). Наблюдается локализация однородных ядер минимальной температуры в холодном промежуточном слое, совпадающем с зоной максимальных скоростей течений. В плоскостях поперечных термохалинных разрезов этим зонам соответствуют области, ограниченные замкнутыми изотермами. В поле скорости звука наблюдается аналогичная картина - этим зонам соответствуют области, ограниченные замкнутыми изотахами. Подобные, но более выраженные области были обнаружены и ранее при исследовании таких мезомасштабных неоднородностей, как вихревые образования, фронтальные и межфронтальные зоны в районах течений Куросио - Ойясио, Калифорнийского течения. В связи с этим, было выявлено существование особого типа звукового канала в океане, представляющего собой трехмерный акустический волновод. В отличие от известного плоскослоистого волновода здесь имеют место зоны не только повышенных вертикальных, но и горизонтальных градиентов скорости звука, ограничивающие данную область слева и справа. В плоскости поперечных разрезов - это области, ограниченные замкнутыми изотахами. В районе Курильских проливов, наблюдается слабовыраженное подобие трехмерных акустических волноводов. Экспедиционные данные ТОИ ДВО РАН показывают постоянное существование таких волноводов в исследуемом районе.

Таким образом, в районе Курильских островов наблюдаются следующие особенности гидроакустической структуры вод:

  • сравнительно низкие значения скорости звука на поверхности моря в шельфовой зоне Курильской гряды;
  • размывание оси звукового канала и увеличение в нем скорости распространения звука по направлению к островам;
  • разрушение звукового канала на мелководье островов, вплоть до его полного исчезновения;
  • наряду с плоскослоистым волноводом происходит формирование трехмерных акустических волноводов.

Таким образом, формирование гидроакустической структуры вод в исследуемом районе в целом определяется особенностями гидрологической структуры вод. Каждый район - зона Курильских проливов, прилегающие районы Тихого океана и Охотского моря - характеризуются как определенными типами термохалинной структуры вод, так и определенными особенностями структуры поля скорости звука. В каждом районе наблюдаются свои типы кривых вертикального распределения скорости звука с соответствующими численными индексами экстремумов и видами звуковых каналов.

Структура поля скорости звука в районе Курильских островов

теплое полугодие

Скорость звука, м/с

Глубина, м

тихоокеанский

поверхностный

тахоклин

ось звукового канала

охотоморский тип гидрологической структуры

поверхностный

тахоклин

ось звукового канала

южно-охотоморский тип гидрологической структуры

поверхностный

тахоклин

ось звукового канала

Зоны Курильских проливов

поверхностный

тахоклин

ось звукового канала

Зоны мелководий

поверхность-дно

Для тихоокеанской субарктической структуры вод формирование поля скорости звука в значительной степени связано с Курильским течением, где ось звукового канала, как показали исследования, совпадает со стрежнем течения и зоной минимальной температуры холодного промежуточного слоя. Тип формирующихся звуковых волноводов - термический.

В охотоморской структуре вод отрицательные значения минимальной температуры воды в холодном промежуточном слое обусловливают формирование резко выраженного подводного звукового канала. Обнаружено, что в поле скорости звука здесь, как и для ядра холодного промежуточного слоя, наблюдается “обрыв” плоскослоистого волновода при пересечении Прикурильского фронта Охотского моря.

В структуре южно-охотоморских вод форма вертикальной кривой скорости звука определяется не только вертикальным температурным профилем, но и немонотонным распределением профиля солености из-за вторжения теплых, более соленых вод течения Соя. В связи с этим положение оси звукового канала наблюдается несколько глубже положения ядра холодного промежуточного слоя. Тип звукового канала перестает быть чисто термическим. Особенностью строения поля скорости звука в данном районе является также максимальный диапазон изменения величины скорости звука от поверхности до оси звукового канала, по сравнению с другими рассматриваемыми здесь районами.

Для структуры вод зоны Курильских проливов характерны сравнительно малые значения скорости звука на поверхности, сглаженные экстремумы кривой вертикального профиля скорости звука и размывание оси звукового канала.

В гомогенизированных водах зоны мелководья наблюдается разрушение звукового канала вплоть до его исчезновения. В зоне Курильских проливов и прилегающих к ним районах – как со стороны Тихого океана, так и Охотского моря - наряду с плоскослоистыми волноводами существуют слабо выраженные трехмерные акустические волноводы.

Охотское море расположено в северо-западной части Тихого океана у берегов Азии и отделяется от океана цепью Курильских островов и полуостровом Камчатка. С юга и запада оно ограничено побережьем острова Хоккайдо, восточным берегом острова Сахалин и берегом Азиатского материка. Море значительно вытянуто с юго-запада на северо-восток в пределах сферической трапеции с координатами 43°43"– 62°42" с. ш. и 135°10"–164°45" в. д. Наибольшая длина акватории в этом направлении равна 2463 км, а ширина достигает 1 500 км. Площадь зеркала морской поверхности составляет 1603 тыс. км2, протяженность береговой линии - 10 460 км, а суммарный объем вод моря - 1316 тыс. км3. По своему географическому положению оно относится к окраинным морям смешанного материково-окраинного типа. Охотское море соединяется с Тихим океаном многочисленными проливами Курильской островной гряды, а с Японским морем - через пролив Лаперуза и через Амурский лиман - проливами Невельского и Татарским. Среднее значение глубины моря составляет 821 м, а наибольшее - 3521 м (в Курильской котловине).

Основными морфологическими зонами в рельефе дна являются: шельф (материковая и островная отмель остров Сахалин), материковый склон, на котором выделяются отдельные подводные возвышенности, впадины и острова, и глубоководная котловина. Шельфовая зона (0–200 м) имеет ширину 180–250 км и занимает около 20% площади моря. Широкий и пологий, в центральной части бассейна, материковый склон (200–2000 м) занимает около 65%, а самая глубоководная котловина (более 2500 м), расположенная в южной части моря - 8% площади моря. В пределах участка материкового склона выделяются несколько возвышенностей и впадин, где глубины резко меняются (поднятие Академии наук, поднятие Института океанологии и котловины Дерюгина). Дно глубоководной Курильской котловины представляет собой плоскую абиссальную равнину, а Курильская гряда является естественным порогом, отгораживающим котловину моря от океана.

Проливами Амурский лиман, Невельского на севере и Лаперуза на юге Охотское море соединяется с Японским морем, а многочисленными Курильскими проливами - с Тихим океаном. Цепь Курильских островов отделяется от острова Хоккайдо проливом Измены, а от полуострова Камчатка - Первым Курильским проливом. Проливы, соединяющие Охотское море с сопредельными районами Японского моря и Тихого океана, обеспечивают возможность водообмена между бассейнами, которые, в свою очередь, оказывают существенное влияние на распределение гидрологических характеристик. Проливы Невельского и Лаперуза относительно узки и мелководны, что является причиной относительно слабого водообмена с Японским морем. Проливы Курильской островной гряды, протянувшейся примерно на 1200 км, напротив, являются более глубоководными, а их суммарная ширина составляет 500 км. Наиболее глубоководными являются проливы Буссоль (2318 м) и Крузенштерна (1920 м).

Северо-западное побережье Охотского моря практически лишено крупных заливов, а северное - значительно изрезано. В него вдается Тауйская губа, берега которой изрезаны заливами и бухтами. От Охотского моря губа отделена полуостровом Кони.

Самый крупный залив Охотского моря лежит в его северо-восточной части, вдаваясь на 315 км в материк. Это залив Шелихова с Гижигинской и Пенжинской губами. Гижигинская и Пенжинская губы разделены возвышенным полуостровом Тайгонос. В юго-западной части залива Шелихова, севернее полуострова Пьягина, располагается небольшая Ямская губа.
Западное побережье полуострова Камчатка выровнено и практически лишено заливов.

Сложны по своим очертаниям и образуют мелкие заливы берега Курильских островов. С Охотоморской стороны наиболее крупные заливы находятся у острова Итуруп, которые глубоководны и имеют весьма сложно расчлененное дно.

В Охотское море впадает довольно много преимущественно небольших рек, поэтому при значительном объеме его вод материковый сток относительно невелик. Он равен примерно 600 км3 в год, при этом около 65% стока дает река Амур. Другие сравнительно крупные реки - Пенжина, Охота, Уда, Большая (на Камчатке) - приносят в море значительно меньше пресной воды. Сток поступает, главным образом, весной и в начале лета. В это время наибольшее его влияние ощущается, в основном, в прибрежной зоне, вблизи устьевых областей крупных рек.

Берега Охотского моря в разных районах относятся к различным геоморфологическим типам.Большей частью это абразионные, измененные морем берега, и только на полуострове Камчатка и острове Сахалин встречаются аккумулятивные берега. В основном море окружают высокие и обрывистые берега. На севере и северо-западе скалистые уступы спускаются прямо к морю. Вдоль Сахалинского залива берега невысоки. Юго-восточный берег Сахалина невысок, а северо-восточный - низменный. Берега Курильских островов очень обрывисты. Северо-восточный берег острова Хоккайдо преимущественно низменный. Такой же характер носит побережье южной части Западной Камчатки, но берега ее северной части несколько возвышаются.

По особенностям состава и распределения донных осадков можно выделить три основных зоны: центральную, которая сложена преимущественно диатомовым алевритом, алевритово-глинистыми и частично глинистыми илами; зону распространения гемипелагических и пелагических глин в западной, восточной и северной частях Охотского моря; а также зону распространения разнозернистых песков, песчаников гравия и алевритов - на северо-востоке Охотского моря. Повсеместно распространен грубообломочный материал, который является результатом ледового разноса.

Охотское море находится в зоне муссонного климата умеренных широт. Значительная часть моря на западе глубоко вдается в материк и лежит сравнительно близко от полюса холода азиатской суши, поэтому главный источник холода для Охотского моря находится к западу от него. Сравнительно высокие хребты Камчатки затрудняют проникновение теплого тихоокеанского воздуха. Только на юго-востоке и на юге море открыто к Тихому океану и Японскому морю, откуда в него поступает значительное количество тепла. Однако влияние охлаждающих факторов сказывается сильнее, чем отепляющих, поэтому Охотское море в целом холодное.

В холодную часть года (с октября по апрель) на море воздействуют Сибирский антициклон и Алеутский минимум. Влияние последнего распространяется, главным образом, на юго-восточную часть моря. Такое распределение крупномасштабных барических систем вызывает сильные устойчивые северо-западные и северные ветры, часто достигающие штормовой силы. Зимой скорость ветра бывает обычно 10–11 м/с.

В самом холодном месяце - январе - средняя температура воздуха на северо-западе моря равна –20...–25°С, в центральных районах - –10...–15°С, а в юго-восточной части моря - –5...–6°С.

В осенне-зимнее время циклоны преимущественно континентального происхождения. Они приносят с собой усиление ветра, иногда понижение температуры воздуха, но погода остается ясной и сухой, так как поступает континентальный воздух с охлажденного материка. В марте - апреле происходит перестройка крупномасштабных барических полей, Сибирский антициклон разрушается, а Гавайский максимум усиливается. В результате в теплый сезон (с мая по октябрь) Охотское море находится под воздействием Гавайского максимума и области пониженного давления, расположенной над Восточной Сибирью. В это же время над морем преобладают слабые юго-восточные ветры. Их скорость обычно не превышает 6–7 м/с. Наиболее часто эти ветры наблюдаются в июне и в июле, хотя в эти месяцы иногда отмечаются более сильные северо-западные и северные ветры. В общем тихоокеанский (летний) муссон слабее азиатского (зимнего), так как в теплый сезон горизонтальные градиенты давления сглажены.
Летом средняя месячная температура воздуха в августе понижается с юго-запада на северо-восток (от 18°С до 10–10,5°C).

В теплое время года над южной частью моря довольно часто проходят тропические циклоны - тайфуны. С ними связано усиление ветра до штормового, который может продолжаться до 5–8 дней. Преобладание в весенне-летний сезон юго-восточных ветров приводит к значительной облачности, осадкам, туманам.
Муссонные ветры и более сильное зимнее выхолаживание западной части Охотского моря по сравнению с восточной - важные климатические особенности этого моря.

Географическое положение, большая протяженность по меридиану, муссонная смена ветров и хорошая связь моря с Тихим океаном через Курильские проливы - основные природные факторы, которые наиболее существенно влияют на формирование гидрологических условий Охотского моря.

Поступление поверхностных тихоокеанских вод в Охотское море происходит, главным образом, через северные проливы, в частности через Первый Курильский пролив.

В верхних слоях южной части Курильской гряды преобладает сток охотоморских вод, а в верхних слоях северной части гряды происходит поступление тихоокеанских вод. В глубинных слоях преобладает поступление тихоокеанских вод.

Приток тихоокеанских вод существенно сказывается на распределении температуры, солености, на формировании структуры и общей циркуляции вод Охотского моря.

В Охотском море выделяют следующие водные массы:

– поверхностная водная масса, имеющая весеннюю, летнюю и осеннюю модификации. Она представляет собой тонкий прогретый слой толщиной 15–30 м, который ограничивает верхний максимум устойчивости, обусловленный, в основном, температурой;
– охотоморская водная масса формируется зимой из поверхностной воды и весной, летом и осенью проявляется в виде холодного промежуточного слоя, залегающего между горизонтами 40–150 м. Эта водная масса характеризуется довольно однородной соленостью (31–32‰) и различной температурой;
– промежуточная водная масса формируется, в основном, за счет спускания вод по подводным склонам, в пределах моря, располагаясь от 100–150 до 400–700 м, и характеризуется температурой 1,5°С и соленостью 33,7‰. Эта водная масса распространена почти повсюду;
– глубинная тихоокеанская водная масса представляет собой воду нижней части теплой прослойки Тихого океана, поступающую в Охотское море на горизонтах ниже 800–1000 м. Эта водная масса расположена на горизонтах 600–1350 м, имеет температуру 2,3°С и соленость 34,3‰.

Водная масса южной котловины имеет тихоокеанское происхождение и представляет собой глубинную воду северо-западной части Тихого океана около горизонта 2300 м. Эта водная масса заполняет котловину от горизонта 1350 м до дна и характеризуется температурой 1,85°С и соленостью 34,7‰, которые лишь незначительно изменяются с глубиной.

Температура воды на поверхности моря понижается с юга на север. Зимой почти повсеместно поверхностные слои охлаждаются до температуры замерзания, равной –1,5...–1,8°С. Лишь в юго-восточной части моря она держится около 0°С, а вблизи северных Курильских проливов под влиянием тихоокеанских вод температура воды достигает 1–2°С.
Весенний прогрев в начале сезона главным образом идет на таяние льда, только к концу его начинается повышение температуры воды.

Летом распределение температуры воды на поверхности моря довольно разнообразно. В августе наиболее прогреты (до 18–19°С) воды, прилегающие к острову Хоккайдо. В центральных районах моря температура воды равна 11–12°С. Наиболее холодные поверхностные воды наблюдаются у острова Ионы, у мыса Пьягина и возле пролива Крузенштерна. В этих районах температура воды держится в пределах 6–7°С. Образование локальных очагов повышенной и пониженной температуры воды на поверхности, в основном, связано с перераспределением тепла течениями.

Вертикальное распределение температуры воды неодинаково от сезона к сезону и от места к месту. В холодное время года изменение температуры с глубиной менее сложно и разнообразно, чем в теплые сезоны.

Зимой в северных и центральных районах моря охлаждение вод распространяется до горизонтов 500–600 м. Температура воды относительно однородна и изменяется от –1,5...–1,7°С на поверхности до –0,25°С на горизонтах 500–600 м, глубже она повышается до 1–0°С, в южной части моря и возле Курильских проливов температура воды от 2,5–3°С на поверхности понижается до 1–1,4°С на горизонтах 300–400 м и далее плавно повышается до 1,9–2,4°С в придонном слое.

Летом поверхностные воды прогреты до температуры 10–12°С. В подповерхностных слоях температура воды несколько ниже, чем на поверхности. Резкое понижение температуры до –1...–1,2°С наблюдается между горизонтами 50–75 м, глубже, до горизонтов 150–200 м, температура быстро повышается до 0,5–1°С, а затем она повышается более плавно, и на горизонтах 200–250 м равна 1,5–2°С. Далее температура воды почти не изменяется до дна. В южной и юго-восточной частях моря, вдоль Курильских островов, температура воды от 10–14°С на поверхности понижается до 3–8°С на горизонте 25 м, далее до 1,6–2,4°С на горизонте 100 м и до 1,4–2°С у дна. Для вертикального распределения температуры летом характерен холодный промежуточный слой. В северных и центральных районах моря температура в нем отрицательна, и только возле Курильских проливов она имеет положительные значения. В разных районах моря глубина залегания холодного промежуточного слоя различна и изменяется от года к году.

Распределение солености в Охотском море сравнительно мало изменяется по сезонам. Соленость повышается в восточной части, находящейся под воздействием тихоокеанских вод, и понижается в западной части, опресняемой материковым стоком. В западной части соленость на поверхности 28–31‰, а в восточной - 31–32‰ и более (до 33‰ вблизи Курильской гряды).

В северо-западной части моря, вследствие опреснения, соленость на поверхности равна 25‰ и менее, а толщина опресненного слоя - около 30–40 м.
С глубиной в Охотском море происходит увеличение солености. На горизонтах 300–400 м в западной части моря соленость равна 33,5‰, а в восточной - около 33,8‰. На горизонте 100 м соленость равна 34‰ и далее к дну возрастает незначительно, всего на 0,5–0,6‰.

В отдельных заливах и проливах величина солености, ее стратификация могут значительно отличаться от вод открытого моря в зависмости от местных условий.

В соответствии с температурой и соленостью более плотные воды наблюдаются зимой в северных и центральных районах моря, покрытых льдом. Несколько меньше плотность в относительно теплом прикурильском районе. Летом плотность воды уменьшается, ее наименьшие величины приурочены к зонам влияния берегового стока, а наибольшие отмечаются в районах распространения тихоокеанских вод. Зимой она повышается незначительно от поверхности до дна. Летом ее распределение зависит в верхних слоях от температуры, а на средних и нижних горизонтах - от солености. В летнее время создается заметная плотностная стратификация вод по вертикали, особенно заметно плотность увеличивается на горизонтах 25–50 м, что связано с прогревом вод в открытых районах и опреснением у берегов.

Интенсивное льдообразование на большей части моря возбуждает усиленную термохалинную зимнюю вертикальную циркуляцию. На глубинах до 250–300 м она распространяется до дна, а ниже ей препятствует существующий здесь максимум устойчивости. В районах с пересеченным рельефом дна распространению плотностного перемешивания в нижние горизонты способствует сползание вод по склонам.

Под влиянием ветров и притока вод через Курильские проливы формируются характерные черты системы непериодических течений Охотского моря. Основная из них - циклоническая система течений, охватывающая почти все море. Она обусловлена преобладанием циклонической циркуляции атмосферы над морем и прилегающей частью Тихого океана. Кроме того, в море прослеживаются устойчивые антициклонические круговороты.
Сильные течения обходят море вдоль береговой линии против часовой стрелки: теплое Камчатское течение, устойчивое Восточно-Сахалинское течение и довольно сильное течение Соя.
И наконец, еще одна особенность циркуляции вод Охотского моря - двусторонние устойчивые течения в большинстве Курильских проливов.

Течения на поверхности Охотского моря наиболее интенсивны у западных берегов Камчатки (11–20 см/с), в Сахалинском заливе (30–45 см/с), в районе Курильских проливов (15–40 см/с), над Курильской котловиной (11–20 см/с) и в течении Соя (до 50–90 см/с).

В Охотском море хорошо выраженыразличные виды периодических приливных течений: полусуточные, суточные исмешанные с преобладанием полусуточной или суточной составляющих. Скоростиприливных течений от нескольких сантиметров до 4 м/с. Вдали от берегов скорости течений невелики - 5–10 см/с. В проливах, заливах и у берегов их скорости значительно возрастают. Например, в Курильских проливах скорости течений доходят до 2–4 м/с.

В общем приливные колебания уровня в Охотском море весьма значительны и оказывают существенное влияние на его гидрологический режим, особенно в прибрежной зоне.
Кроме приливных здесь хорошо развиты и сгонно-нагонные колебания уровня. Они возникают главным образом при прохождении глубоких циклонов над морем. Нагонные повышения уровня достигают 1,5–2 м. Наибольшие нагоны отмечены на побережье Камчатки и в заливе Терпения.

Значительные размеры и большие глубины Охотского моря, частые и сильные ветры над ним обусловливают развитие здесь крупных волн. Особенно бурным море бывает осенью, а в некоторых районах и зимой. На эти сезоны приходится 55–70% штормового волнения, в том числе с высотами волн 4–6 м, а наибольшие высоты волн достигают 10–11 м. Самые неспокойные - южный и юго-восточный районы моря, где средняя повторяемость штормового волнения равна 35–40%, а в северо-западной части она уменьшается до 25–30%.

В обычные годы южная граница сравнительно устойчивого ледяного покрова изгибается к северу и проходит от пролива Лаперуза до мыса Лопатка.
Крайняя южная часть моря никогда не замерзает. Однако благодаря ветрам в нее выносятся с севера значительные массы льда, часто скапливающиеся у Курильских островов.

Ледяной покров в Охотском море держится на протяжении 6–7 месяцев. Плавучим льдом покрыто более 75% поверхности моря. Сплоченные льды северной части моря представляют серьезные препятствия для плавания даже у ледоколов. Общая продолжительность ледового периода в северной части моря достигает 280 дней в году. Часть льдов из Охотского моря выносится в океан, где они почти сразу же разрушаются и тают.

Прогнозные ресурсы углеводородов Охотского моря оцениваются в 6,56 млрд т в нефтяном эквиваленте, разведанные запасы - свыше 4 млрд т. Наиболеекрупные месторождения на шельфах (вдоль побережья острова Сахалин, полуострова Камчатка, Хабаровского края и Магаданской области). Наиболее изучены месторождения острова Сахалин. Поисковые работы на шельфе острова начались в 70-х гг. ХХ в., к концу 90-х годов на шельфе Северо-Восточного Сахалина были открыты семь крупных месторождений (6 нефтегазоконденсатных и 1 газоконденсатное) и небольшое газовое месторождение в Татарском проливе. Общие запасы газа на сахалинском шельфе оцениваются в 3,5 трлн м3.

Растительность и животный мир отличаются большим разнообразием. По запасам промыслового краба море занимает первое место в мире. Большую ценность представляют лососевые рыбы: кета, горбуша, кижуч, чавыча, нерка - источник красной икры. Ведется интенсивный лов сельди, минтая, камбалы, трески, наваги, мойвы и др. В море обитают киты, тюлени, сивучи, морские котики. Все больший интерес приобретает промысел моллюсков и морских ежей. На литорали повсеместно распространены различные водоросли.
В связи со слабой освоенностью прилегающих территорий морской транспорт приобрел основное значение. Важные морские пути ведут к Корсакову на острове Сахалин, Магадану, Охотску и другим населенным пунктам.

Наибольшей антропогенной нагрузке подвергаются районы Тауйской губы в северной части моря и шельфовые районы острова Сахалин. В северную часть моря ежегодно поступает около 23 т нефтепродуктов, при этом 70–80% с речным стоком. В Тауйскую губу загрязняющие вещества поступают от береговых промышленных и коммунально-бытовых объектов, причем стоки Магадана поступают в прибрежную зону практически без очистки.

Шельфовая зона острова Сахалин загрязняется предприятиями угле-, нефте- и газодобычи, целлюлозно-бумажными комбинатами, рыбопромысловыми и перерабатывающими судами и предприятиями, сточными водами коммунально-бытовых объектов. Ежегодное поступление нефтепродуктов в юго-западную часть моря оценивают примерно в 1,1 тыс. т, при этом 75–85% с речным стоком.
В Сахалинский залив нефтеуглероды попадают, в основном, со стоком реки Амур, поэтому максимальные их концентрации, как правило, отмечаются в центральной и западной частях залива по оси поступающих амурских вод.

Восточная часть моря - шельф полуострова Камчатка - загрязняется речным стоком, с которым в морскую среду поступает основная часть нефтеуглеродов. В связи с сокращением работ на рыбоконсервных предприятиях полуострова с 1991 г. произошло уменьшение объема сточных вод, сбрасываемых в прибрежную зону моря.

Северная часть моря - залив Шелихова, Тауйская и Пенжинская губы - наиболее загрязненный район моря со средним содержанием в воде нефтеуглеродов в 1–5 раз превышающим предел допустимой концентрации. Это определяется не только антропогенной нагрузкой на акваторию, но и невысокими среднегодовыми температурами воды и, следовательно, низкой способностью экосистемы к самоочищению. Наиболее высокий уровень загрязнения северной части Охотского моря был отмечен в период с 1989 по 1991 гг.

Южная часть моря - пролив Лаперуза и залив Анива - подвергаются интенсивному нефтяному загрязнению в весенне-летний период торговым и рыболовецким флотами. В среднем содержание нефтеуглеродов в проливе Лаперуза не превышает предела допустимой концентрации. Залив Анива загрязнен чуть больше. Наибольший уровень загрязнения в данном районе отмечался у порта Корсаков, еще раз подтверждая, что порт является источником интенсивного загрязнения морской среды.
Загрязнение прибрежной зоны моря вдоль северо-восточной части острова Сахалин связано, в основном, с разведкой и добычей нефти и газа на шельфе острова и до конца 80-х годов прошлого века не превышало предельно допустимую концентрацию.

Охотское море - один из крупнейших водных бассейнов, омывающих берега нашей страны.

Его площадь - 1 603 000 км 2 - в полтора раза превосходит площадь Японского моря и уступает лишь Берингову морю, от которого оно отделено полуостровом Камчатка. Цепью действующих и потухших вулканов Курильской островной гряды Охотское море отгорожено от Тихого океана, а островами Хоккайдо и Сахалин - от Японского моря. Пенжинская губа на севере, Удская на западе, заливы Тугурский, Академии, Терпения и Анива на юге глубоко вдаются в сушу. Совершенно замкнутое на севере, Охотское море на западе через 19 курильских проливов обменивается водами с Тихим океаном, а еще южнее, через проливы Лаперуза и Татарский, - с Японским морем. Береговая линия его протянулась на 10 444 км.

Морс покрывает древнюю сушу Охотию, и поэтому оно мелководно на большей части своей акватории. Лишь в Южноохотской котловине глубина достигает 3372 м. Если взглянуть на геоморфологическую карту Охотского моря, можно обнаружить на ней ряд впадин и поднятий: возвышенность Академии наук СССР, впадины ТИНРО, Дерюгина, желоба Макарова и Петра Шмидта. На севере шельф Охотского моря мелководный, к югу глубины постепенно возрастают. Площадь шельфа составляет 36% от всей акватории моря.

Охотское море питает множество больших и малых рек, но главная его артерия - Амур, великая река Восточной Азии. Берега охотоморских островов и полуострова Камчатки большей частью низменные, заболоченные, с реликтовыми солеными озерами, бухтами и лагунами. Особенно много их на Сахалине. Западное же побережье Охотского моря гористое, с обрывистыми прямыми берегами. Хребты Прибрежный, Ульинский и отроги хребта Сунтар-Хаята близко подходят к морю у Аяна, Охотска и Магадана.

В Охотском море почти все острова расположены вблизи побережья. Самый большой из них Сахалин, площадь которого составляет 76 400 км 2 . Курильский архипелаг, протянувшийся на 1200 км между японским островом Хоккайдо и мысом Лопатка на Камчатке, насчитывает 56 островов (кроме мелких вулканического происхождения). Вулканологами выявлено и учтено здесь. 38 действующих и 70 потухших вулканов. На крайнем западе моря расположены Шантарские острова. Наиболее значительный из них - Большой Шантар. Его площадь 1790 км 2 . Некоторые из этих 15 островов давно, обжиты птицами и привлекают внимание ученых. К югу от полуострова Терпения находится небольшой остров Тюлений, известный своим лежбищем котиков. А вот крошечный островок Ионы, лежащий в 170 милях восточнее Аяна, - это просто одинокая скала, навещают которую лишь морские птицы да сивучи. Кроме этих осколков суши в самой вершине Сахалинского залива раскинулись острова Чкалова, Байдукова и Белякова, названные именами отважных советских асов.

Водные массы Охотского моря, двигаясь в основном против часовой стрелки, образуют циклоническую систему течений. Обусловлено это двумя главными факторами - стоком речных вод и поступлением теплых вод Тихого океана через проливы Крузенштерна и Буссоль. Вокруг Шантарских островов возникает круговое движение в обратном направлении (по часовой стрелке), напоминающее течения в заливах Аниза и Терпения.

На юг моря заходят ветви двух мощных водных потоков - теплого течения Куро-Сиво и холодного Ойя-Сиво. Кроме этих течений в Охотское море через пролив Лаперуза проникают струи теплого течения Соя. Влияние теплых течений усиливается летом и ослабевает зимой. Кроме течения Ойя-Сиво, вливающегося в Охотское море через Курильские проливы, охлаждение вод вызывает также вдольбереговое Восточно-Сахалинское течение, направленное с севера на юг. Через южные Курильские проливы холодные воды уходят в Тихий океан.

Охотское море известно своими мощными приливами. В Пенжинской губе их высота достигает почти 13 м (своеобразный рекорд для СССР), несколько меньшая разница уровней моря при полной (прилив) и малой (отлив) воде наблюдается в Гижигинской губе и на Шантарских островах.

На просторах Охотоморья нередко разгуливаются шторма. Особенно беспокоен южный район моря, где с ноября по март дуют сильные ветры, а гребни волн вздымаются на высоту 10-11 м. Еще одна особенность этого огромного водного бассейна - его деловитость, самая большая на Дальнем Востоке. Лишь у западных берегов Камчатки и Средних Курильских островов сохраняется зимой полоска чистой воды. Разрушение ледового покрова длится с апреля по август - как видим, наше море называют студеным далеко не случайно. Перемещение воздушных масс также влияет на суровый нрав Охотского моря. Зимний антициклон определяет северо-западное направление ветров, а летом преобладают юго-восточные ветры, что характерно для муссонного климата. Амплитуда годовых колебаний температуры воздуха составляет 35° С, на 10° превышая таковую в Беринговом и Японском морях. Среднегодовая температура воздуха в Охотском море изменяется от -7° (в. районе Гижиги) до 5,5° (Абасири на Хоккайдо).

Летний прогрев вод Охотского моря ограничивается: самыми верхними слоями. В августе температура поверхностной воды достигает 16-18° у берегов Хоккайдо и 12-14° С - на северо-западе. Наиболее низкая летняя температура поверхностных вод держится вдоль Средних Курил (6-8° С) и у полуострова Пьягина (4-6°С). В феврале (наиболее холодный месяц) во всем Охотском море господствуют отрицательные температуры. Слоем «вечной мерзлоты» гидрологи называют горизонт вод, залегающий на глубине между 50 и 100 м. У берегов Сахалина температура этого слоя воды самая низкая и достигает -1,6°. Глубже, примерно на 200 м, температура снова повышается на 1,5-2° выше нуля. Лишь в северной части моря и юго-восточнее Сахалина для этой глубины характерна отрицательная температура. С дальнейшим погружением температура медленно повышается, достигая 2,4° на отметке 1000 м (за счет более теплых вод океана), а затем снова незначительно понижается. На глубинах от двух до трех тысяч метров она составляет 1,9° С зимой и летом.

В районе Курильских островов соленость вод Охотского моря достигает 33 промилле (немногим более 30 граммов солей в одном литре). В других местах соленость ниже; наиболее же опреснена вода в Сахалинском заливе, куда впадает Амур. С глубиной соленость морской воды увеличивается, и ниже двух тысяч метров она вполне соответствует океанической, достигая 34,5 промилле.

Максимум насыщения воды кислородом и наивысшая степень концентрации ионов водорода зафиксированы на глубине 10 м, что связано с интенсивным развитием фитопланктона. На глубине 1000-1500 м отмечен резкий дефицит кислорода - до 10% насыщения. Здесь образуется зона «биологической депрессии». Глубже содержание кислорода возрастает до 20-25%. Заполняясь через проливы океаническими водами с пониженным содержанием кислорода, Охотоморская котловина содержит водные массы, слабо перемешивающиеся из-за резких различий отдельных слоев по плотности. Вертикальная циркуляция вод происходит в пределах первого двухсотметрового слоя. Это вызвано образованием на глубине 50-100 м более плотного и холодного промежуточного слоя вод. Зимнее охлаждение их сопровождается увеличением солености и плотности, что и приводит к опусканию этих масс с поверхности.

Различия солености вод в Амурском лимане могут достигать 22 промилле. С севера в лиман поступают соленые морские воды, смешивающиеся с пресными речными. При сильных южных ветрах в Амуре иногда возникает противотечение, соленая вода поднимается вверх по его руслу, и образуется так называемый «фаунистический барьер», преодолеть который не под силу животным.

Донные осадки Охотского моря представлены песками, галечниками и каменистыми россыпями с примесью ила на шельфе. В закрытых бухтах, отделенных от моря песчаными косами, отлагаются чистые илы. Песчаные осадки преобладают в Сахалинском заливе, а галечные - в Пенжинской губе. В глубоководной котловине на юге моря дно устлано песчанистыми илами, а в центральной части его - зеленоватые и коричневые илы на глубинах между 1000 и 3000 м определяют распространение зоны застойных вод. Вокруг острова Ионы на глубине около 500 м обнаружены железо-марганцевые конкреции.

В осадках много кремневых панцирей мельчайших одноклеточных организмов - диамотовых водорослей и радиолярий.

История Охотского моря насчитывает многие сотни миллионов лет. Морские водоросли и бактерии, существовавшие свыше полутора миллиардов лет назад, оставили следы своей жизнедеятельности на западном побережье нынешнего Охотского моря. В силурийском периоде (около 450 миллионов лет назад) под водой пребывали юго-западная часть современного бассейна Охотоморья и район острова Сахалин. Такая же обстановка сохранялась в девоне (400-350 миллионов лет назад) в районе Шантарскнх островов, где развивались даже коралловые рифы, вернее рифоподобные сообщества с участием коралловых полипов, мшанок, морских ежей и лилий. Однако большая часть бассейна в палеозое поднималась выше уровня моря. Располагавшаяся здесь древняя суша Охотия около 220 миллионов лет назад включала центральную часть нынешнего моря, Сахалин и Камчатку. С севера, запада и юга Охотию омывало довольно глубокое море со множеством островов. Находки остатков папоротников и цикадофитов свидетельствуют, что здесь произрастала субтропическая флора, для которой необходимы высокая температура и влажный климат.

Прошло еще около 100 миллионов лет. На месте Сахалина и Японских островов протянулась громадная цепь коралловых рифов, по размерам превосходящая нынешний Большой Барьерный риф у восточных берегов Австралии. Юрская рифовая система, вероятно, впервые обозначила положение будущей островной дуги, отделившей от Тихого океана Японское море. Крупная трансгрессия затопила около 80 миллионов лет назад всю Охотию и прилегающие к ней участки суши. На месте Камчатки зародились две параллельные островные гряды. По мере приближения к современной эпохе они все больше простирались в южном направлении, отделяя еще одной дугой бассейны Берингова и Охотского морей.

50-60 миллионов лет назад резкое снижение уровня океана привело к полному осушению Охотии и Берингии. Большой знаток древней истории Охотского моря профессор Г. У. Линдберг убедительно показал, что Охотия местами была даже гористой и по ее территории текли крупные реки, начинавшиеся далеко на западе, - Палеоамур и Палеопенжина. Они-то и выработали глубокие каньоны, впоследствии ставшие подводными впадинами. Некоторые формы наземного рельефа и следы древних береговых линий сохранились на дне Охотского моря и в наши дни.

Охотия ушла под воду около 10 тысяч лет назад, с окончанием последнего четвертичного оледенения. Со временем Южноохотскую котловину отделила от Тихого океана наиболее молодая островная дуга Дальнего Востока - Курильская, - и очертания Охотского моря окончательно определились.

Миновали века. На Охотском побережье появились первые жители. Бухты и лиманы моря изобиловали лежбищами тюленей, в северную часть его заходили моржи. Древние северяне занимались морским промыслом, собирали съедобные моллюски и водоросли.

Значительное сходство древних культур коряков, алеутов и коренных жителей острова Кадьяк вблизи Аляски, отмеченное сибирским историком Р. В. Васильевским, дает основание предполагать, что в заселении Нового Света, по крайней мере начиная с неолита, а может быть и ранее, принимали участие аборигены Охотоморья и Камчатки. Протоалеутские черты этот исследователь обнаружил в строении гарпунов коряков, форме каменных жировых ламп-светильников и наконечников стрел, характерном типе инструментов с бороздками-зазубринами, крючков, острог, шильев, ложек и другого охотничьего и хозяйственного инвентаря.

На юге Охотского моря существовала островная культура, близкая по ряду признаков к древнекорякской. Отметим наличие поворотного гарпуна и значительное количество тюленьих и китовых костей на раскопках, сходную керамику и каменный инвентарь приамурских поселений и стоянок древних обитателей Сахалина и Курильских островов.

Советский антрополог М. Г. Левин отмечал, что «антропологическая, языковая и культурная близость нивхов Сахалина и Амура, отражающая, несомненно, процессы постоянного общения между ними на протяжении ряда последних столетий, уходит, вместе с тем, своими корнями и в более далекое прошлое - эпоху неолита… Вполне вероятно, что айнские легенды о тоннах рисуют предков гиляков или родственные им племена, которых айны застали на Сахалине при своем переселении на этот остров» (Этническая антропология и проблемы энтогенеза народов Дальнего Востока, М., 1958, с. 128 - 129).

Но кто такие нивхи, или гиляки, как еще недавно называли этих коренных жителей Нижнего Амура и Сахалина? Слово «нивх» означает «человек». Обряды и обычаи, религиозные верования, мифы и легенды нивхов отражают историю этой древней народности Приамурья и давно уже стали объектом научных исследований. Не так давно ученых взволновало сообщение о поразительных аналогиях в языке нивхов и некоторых африканских племен, в частности в Западном Судане. Оказалось также, что лодки-долбленки и топоры нивхов похожи на лодки и топоры жителей островов Таити и Адмиралтейства.

О чем говорят такие совпадения? Пока что трудно ответить на этот вопрос. Может быть, какая-то ниточка протянется из священных песнопений нивхов?

Море все кипело. Тюлени и рыба умерли.
Людей нет, рыбы нет.
Потом из моря гора родилась.
Потом из моря земля родилась.

Не свидетельствует ли эта легенда о том, что на глазах нивхов рождались Курильские острова? Если допустить возможность такого истолкования ее, то следует признать в нивхах один из древнейших народов Дальнего Востока. Из шаманского песнопения мы узнаем о теплых морях и белых горах, отмелях из белого песка и оставленных женах нивхов. Судя по всему, речь идет о коралловых островах Тихого океана, откуда могли прийти предки нивхов в бассейн Охотского моря.

Еще более загадочной представляется история айнов, неожиданно появившихся среди аборигенов Сахалина. Еще в 1565 г. монах де Фроэс сообщал в «Японских письмах»: «…айны почти, европейским внешним видом и густыми волосами, покрывавшими голову… резко отличались от безбородых монголоидов». Их воинственность, выносливость, обычай женщин чернить губы, нагота, едва прикрытая «поясом стыдливости», столь распространенным среди южных островитян Тихого океана, - все это настолько поражало воображение путешественников, что некоторые из них даже называли айнов черными людьми. В «расспросных речах» Василия Пояркова говорится об острове, лежащем к востоку (т. е. Сахалине), о нивхах, населяющих его северную часть, и «черных людях, которых называют куями», живущих на юге. Стоянку негроайнов краеведы обнаружили в Петропавловске-Камчатском уже в наши дни.

По мнению выдающегося советского ученого Л. Я. Штернберга, особенности культуры и антропологии айнов сближают их с некоторыми народами Южной Индии, Океании и даже Австралии. Один из аргументов в пользу теории австронезийского происхождения айнов - культ змеи, распространенный также среди некоторых племен Юго-Восточной Азии.

Когда во II тысячелетии до н. э. айны пришли на южные острова Охотского моря, они застали здесь тончен. Если верить легендам, это были морские зверобои и рыболовы.

Напрашивается вывод, что в район Охотского моря волнами накатывались народы, населявшие некогда южные архипелаги Тихого океана, Индию и даже Австралию. Отчасти смешиваясь с местным населением, они перенимали его культуру, обычаи. Типичные жители южных стран, айны позаимствовали у ительменов Камчатки конструкцию байдары, у тончей Сахалина - тип лодки, а у нивхов - зимнюю одежду. Даже в айнских орнаментах, как пишет Р. В, Козырева (Древний Сахалин, Л., 1967), на керамике и костяных изделиях встречаются простые и геометрические узоры и насечки, характерные для ранних периодов истории местной культуры.

Уже на глазах человека продолжалось формирование современной береговой линии Охотского моря. Даже в новое и новейшее время его уровень не оставался постоянным. Всего 200 лет назад, как полагает хабаровский палеогеограф Л. И. Сверлова, Сахалин соединялся с устьевой частью Амура. Согласно ее расчетам, основанным на установлении функциональной зависимости между колебаниями уровня Мирового океана и изменениями температурного режима Земли, самое низкое стояние морских вод приходилось на 1710-1730 гг. Сопоставив эти данные с датами плаваний знаменитых мореходов, Л. И. Сверлова пришла к заключению, что Ж. Ф. Лаиеруз в 1787 г., У. Р. Броутон в 1797 г, и даже И. Ф. Крузенштерн в 1805 г. не могли пройти через Татарский пролив, потому что его вообще не существовало: Сахалин в те годы был полуостровом.

В 1849-1855 гг., в период деятельности Амурской экспедиции, морские воды уже перекрыли перемычку между материком и Сахалином и это позволило Г. И. Невельскому донести Н. Н. Муравьеву: «Сахалин - остров, вход в лиман и реку Амур возможен для мореходных судов с севера и юга. Вековое заблуждение положительно рассеяно, истина обнаружилась» (Б. В. Струве. Воспоминания о Сибири 1848-1854 гг., СПб., 1889, с. 79).

И все же Л. И. Сверлова, по-видимому, переоценивает реальное значение колебаний уровня океана. Без тени сомнения пишет она, например, что в 1849-1855 гг. этот уровень был на 10 м выше современного. Но где же в таком случае морские отложения, террасы, абразионные площадки и многие другие признаки, неизбежно сопутствующие смещениям береговых линий? Единственное доказательство более высокого уровня дальневосточных морей в послеледниковое время - низкая терраса высотой 1-3 м, остатки которой обнаружены во многих местах. Однако время ее образования отстоит: на несколько тысяч лет от наших дней.