Как сложить корни с разными степенями. Квадратный корень

В математике корни могут быть квадратными, кубическими или иметь любой другой показатель (степень), который пишется слева над знаком корня. Выражение, стоящее под знаком корня, называется подкоренным выражением. Сложение корней похоже на сложение членов алгебраического выражения, то есть требует определения подобных корней.

Шаги

Часть 1 из 2: Определение корней

Обозначение корней. Выражение под знаком корня () означает, что из этого выражения необходимо извлечь корень определенной степени.

  • Корень обозначают знаком.
  • Показатель (степень) корня пишется слева над знаком корня. Например, кубический корень из 27 записывается так: (27)
  • Если показатель (степень) корня отсутствует, то показатель считается равным 2, то есть это квадратный корень (или корень второй степени).
  • Число, записанное перед знаком корня, называется множителем (то есть это число умножается на корень), например 5 (2)
  • Если множителя перед корнем нет, то он равен 1 (напомним, что любое число, умноженное на 1, равняется самому себе).
  • Если вы впервые работаете с корнями, сделайте соответствующие пометки над множителем и показателем корня, чтобы не запутаться и лучше понять их назначение.

Запомните, какие корни можно складывать, а какие нельзя. Так же, как нельзя складывать разные члены выражения, например, 2а + 2b 4ab, вы не можете складывать разные корни.

  • Нельзя складывать корни с разными подкоренными выражениями, например, (2) + (3) (5). Но вы можете сложить числа, стоящие под одним корнем, например, (2 + 3) = (5) (квадратный корень из 2 примерно равен 1,414, квадратный корень из 3 примерно равен 1,732, а квадратный корень из 5 примерно равен 2,236).
  • Нельзя складывать корни с одинаковыми подкоренными выражениями, но разными показателями, например, (64) + (64) (эта сумма не равна (64), так как квадратный корень из 64 равен 8, кубический корень из 64 равен 4, 8 + 4 = 12, что гораздо больше, чем корень пятой степени из 64, который примерно равен 2,297).
  • Часть 2 из 2: Упрощение и сложение корней

    Определите и сгруппируйте подобные корни. Подобные корни – корни, у которых одинаковые показатели и одинаковые подкоренные выражения. Например, рассмотрим выражение:
    2 (3) + (81) + 2 (50) + (32) + 6 (3)

    • Во-первых, перепишите выражение так, чтобы корни с одинаковым показателем располагались последовательно.
      2 (3) + 2 (50) + (32) + 6 (3) + (81)
    • Затем перепишите выражение так, чтобы корни с одинаковым показателем и с одинаковым подкоренным выражением располагались последовательно.
      2 (50) + (32) + 2 (3) + 6 (3) + (81)

    Упростите корни. Для этого разложите (где возможно) подкоренные выражения на два множителя, один из которых вынесите из-под корня. В этом случае вынесенное число и множитель корня перемножаются.

  • В приведенном выше примере разложите число 50 на 2*25, а число 32 – на 2*16. Из 25 и 16 можно извлечь квадратные корни (соответственно 5 и 4) и вынести 5 и 4 из-под корня, соответственно умножив их на множители 2 и 1. Таким образом, вы получите упрощенное выражение: 10 (2) + 4 (2) + 2 (3) + 6 (3) + (81)
  • Число 81 можно разложить на множители 3*27, а из числа 27 можно извлечь кубический корень, равный 3. Это число 3 можно вынести из-под корня. Таким образом, вы получите еще более упрощенное выражение: 10 (2) + 4 (2) + 2 (3)+ 6 (3) + 3 (3)
  • Сложите множители подобных корней. В нашем примере есть подобные квадратные корни из 2 (их можно сложить) и подобные квадратные корни из 3 (их тоже можно сложить). У кубического корня из 3 подобных корней нет.

  • 10 (2) + 4 (2) = 14 (2).
  • 2 (3)+ 6 (3) = 8 (3).
  • Окончательное упрощенное выражение: 14 (2) + 8 (3) + 3 (3)
    • Не существует общепринятых правил порядка записи корней в выражении. Потому вы можете записывать корни в порядке возрастания их показателей и в порядке возрастания подкоренных выражений.

    Внимание, только СЕГОДНЯ!

    Все интересное

    Число, которое находится под знаком корня, часто мешает решению уравнения, с ним неудобно работать. Даже если оно возведено в степень, дробно или не может быть представлено в виде целого числа в определенной степени, можно попытаться вывести его из…

    Корнем из числа x называется такое число, которое при возведении в степень корня будет равно x. Множителем называется умножаемое число. То есть, в выражении вида x*ª-&radic-y нужно внести x под корень. Инструкция 1Определите степень…

    Если подкоренное выражение содержит набор математических действий с переменными, то иногда в результате его упрощения есть возможность получить относительно простое значение, часть которого можно вынести из под корня. Бывает полезно такое упрощение…

    Арифметические действия с корнями различной степени могут значительно упростить расчеты в физике и технике и сделать их более точными. При умножении и делении удобнее не извлекать корень из каждого сомножителя или делимого и делителя, а сначала…

    Квадратным корнем из числа x называют число a, которое при умножении само на себя дает число x: a * a = a^2 = x, x = a. Как и над любыми числами, над квадратными корнями можно выполнять арифметические операции сложения и вычитания. Инструкция …

    Корень в математике может иметь два значения: это арифметическое действие и каждое из решений уравнения, алгебраического, параметрического, дифференциального или любого другого. Инструкция 1Корень n-ной степени из числа a - это такое число, что…

    При выполнении различных арифметических действий с корнями часто бывает необходимо умение преобразовывать подкоренные выражения. Для упрощения расчетов может понадобиться вынести множитель за знак радикала или внести под него. Это действие можно…

    Корнем называют значок, обозначающий математическую операцию нахождения такого числа, возведение которого в указанную перед знаком корня степень должно дать число, указанное под этим самым знаком. Часто для решения задач, в которых присутствуют…

    Знаком корня в математических науках называется условное обозначение для корней. Число, находящееся под знаком корня, называется подкоренным выражением. При отсутствии показателя степени корень является квадратным, в противном случае цифра указывает…

    Арифметическим корнем n-й степени из действительного числа a называют такое неотрицательное число x, n-я степень которого равна числу a. Т.е. (n) a = x, x^n = a. Существуют различные способы сложения арифметического корня и рационального числа.…

    Корнем n-ой степени из действительного числа a называется такое число b, для которого выполняется равенство b^n = a. Корни нечетной степени существуют для отрицательных и положительных чисел, а корни четной степени - только для положительных.…

    В наше время современных электронных вычислительных машин вычисление корня из числа не представляется сложной задачей. Например, √2704=52, это вам подсчитает любой калькулятор. К счастью, калькулятор есть не только в Windows, но и в обычном, даже самом простеньком, телефоне. Правда если вдруг (с малой долей вероятности, вычисление которой, между прочим, включает в себя сложение корней) вы окажитесь без доступных средств, то, увы, придется рассчитывать только на свои мозги.

    Тренировка ума никогда не помещает. Особенно для тех, кто не так часто работает с цифрами, а уж тем более с корнями. Сложение и вычитание корней - хорошая разминка для скучающего ума. А еще я покажу поэтапно сложение корней. Примеры выражений могут быть следующие.

    Уравнение, которое нужно упростить:

    √2+3√48-4×√27+√128

    Это иррациональное выражение. Для того чтобы его упростить нужно привести все подкоренные выражения к общему виду. Делаем поэтапно:

    Первое число упростить уже нельзя. Переходим ко второму слагаемому.

    3√48 раскладываем 48 на множители: 48=2×24 или 48=3×16. из 24 не является целочисленным, т.е. имеет дробный остаток. Так как нам нужно точное значение, то приблизительные корни нам не подходят. Квадратный корень из 16 равен 4, выноси его из-под Получаем: 3×4×√3=12×√3

    Следующее выражение у нас является отрицательным, т.е. написано со знаком минус -4×√(27.) Раскладываем 27 на множители. Получаем 27=3×9. Мы не используем дробные множители, потому что из дробей вычислять квадратный корень сложнее. Выносим 9 из-под знака, т.е. вычисляем квадратный корень. Получаем следующее выражение: -4×3×√3 = -12×√3

    Следующее слагаемое √128 вычисляем часть, которую можно вынести из-под корня. 128=64×2, где √64=8. Если вам будет легче можно представить это выражение так: √128=√(8^2×2)

    Переписываем выражение с упрощенными слагаемыми:

    √2+12×√3-12×√3+8×√2

    Теперь складываем числа одним и тем же подкоренным выражением. Нельзя складывать или вычитать выражения с разными подкоренными выражениями. Сложение корней требует соблюдение этого правила.

    Ответ получаем следующий:

    √2+12√3-12√3+8√2=9√2

    √2=1×√2 - надеюсь, то, что в алгебре принято опускать подобные элементы, не станет для вас новостью.

    Выражения могут быть представлены не только квадратным корнем, но так же и с кубическим или корнем n-ной степени.

    Сложение и вычитание корней с разными показателями степени, но с равнозначным подкоренным выражением, происходит следующим образом:

    Если мы имеем выражение вида √a+∛b+∜b, то мы можем упростить это выражение так:

    ∛b+∜b=12×√b4 +12×√b3

    12√b4 +12×√b3=12×√b4 + b3

    Мы привели два подобных члена к общему показателю корня. Здесь использовалось свойство корней, которое гласит: если число степени подкоренного выражения и число показателя корня умножить на одно и то же число, то его вычисление останется неизменным.

    На заметку: показатели степени складываются только при умножении.

    Рассмотрим пример, когда в выражении присутствуют дроби.

    5√8-4×√(1/4)+√72-4×√2

    Будем решать по этапам:

    5√8=5*2√2 - мы выносим из-под корня извлекаемую часть.

    4√(1/4)=-4 √1/(√4)= - 4 *1/2= - 2

    Если в тело корня представлено дробью, то часто этой дроби не измениться, если извлечь квадратный корень из делимого и делителя. В итоге мы получили описанное выше равенство.

    √72-4√2=√(36×2)- 4√2=2√2

    10√2+2√2-2=12√2-2

    Вот и получился ответ.

    Главное помнить, что из отрицательных чисел не извлекается корень с четным показателем степени. Если четной степени подкоренное выражение является отрицательным, то выражение является нерешаемым.

    Сложение корней возможно только при совпадении подкоренных выражений, так как они являются подобными слагаемыми. То же самое относиться и к разности.

    Сложение корней с разными числовыми показателями степени производиться посредством приведения к общей корневой степени обоих слагаемых. Это закон действует так же как приведение к общему знаменателю при сложении или вычитании дробей.

    Если в подкоренном выражении имеется число, возведенное в степень, то это выражение можно упростить при условии, что между показателем корня и степени существует общий знаменатель.

    Тема про квадратные корни является обязательной в школьной программе курса математики. Без них не обойтись при решении квадратных уравнений. А позже появляется необходимость не только извлекать корни, но и выполнять с ними другие действия. Среди них достаточно сложные: возведение в степень, умножение и деление. Но есть и достаточно простые: вычитание и сложение корней. Кстати, они только на первый взгляд кажутся такими. Выполнить их без ошибок не всегда оказывается просто для того, кто только начинает с ними знакомиться.

    Что такое математический корень?

    Это действие возникло в противовес возведению в степень. Математика предполагает наличие двух противоположных операций. На сложение существует вычитание. Умножению противостоит деление. Обратное действие степени — это извлечение соответствующего корня.

    Если в степени стоит двойка, то и корень будет квадратным. Он является самым распространенным в школьной математике. У него даже нет указания, что он квадратный, то есть возле него не приписывается цифра 2. Математическая запись этого оператора (радикала) представлена на рисунке.

    Из описанного действия плавно вытекает его определение. Чтобы извлечь квадратный корень из некоторого числа, нужно выяснить, какое даст при умножении на себя подкоренное выражение. Это число и будет квадратным корнем. Если записать это математически, то получится следующее: х*х=х 2 =у, значит √у=х.

    Какие действия с ними можно выполнять?

    По своей сути корень — это дробная степень, у которой в числителе стоит единица. А знаменатель может быть любым. Например, у квадратного корня он равен двум. Поэтому все действия, которые можно выполнить со степенями, будут справедливы и для корней.

    И требования к этим действиям у них одинаковые. Если умножение, деление и возведение в степень не встречают затруднений у учеников, то сложение корней, как и их вычитание, иногда приводит в замешательство. А все потому что хочется выполнить эти операции без оглядки на знак корня. И здесь начинаются ошибки.

    По каким правилам выполняется их сложение и вычитание?

    Сначала нужно запомнить два категорических «нельзя»:

    • нельзя выполнять сложение и вычитание корней, как у простых чисел, то есть невозможно записать подкоренные выражения суммы под один знак и выполнять с ними математические операции;
    • нельзя складывать и вычитать корни с разными показателями, например квадратный и кубический.

    Наглядный пример первого запрета: √6 + √10 ≠ √16, но √(6 + 10) = √16 .

    Во втором случае лучше ограничиться упрощением самих корней. А в ответе оставить их сумму.

    Теперь к правилам

    1. Найти и сгруппировать подобные корни. То есть те, у которых не только стоят одинаковые числа под радикалом, но и они сами с одним показателем.
    2. Выполнить сложение корней, объединенных в одну группу первым действием. Оно легко осуществимо, потому что нужно только сложить значения, которые стоят перед радикалами.
    3. Извлечь корни в тех слагаемых, в которых подкоренное выражение образует целый квадрат. Другими словами, не оставлять ничего под знаком радикала.
    4. Упростить подкоренные выражения. Для этого нужно разложить их на простые множители и посмотреть, не дадут ли они квадрата какого-либо числа. Понятно, что это справедливо, если речь идет о квадратном корне. Когда показатель степени три или четыре, то и простые множители должны давать куб или четвертую степень числа.
    5. Вынести из-под знака радикала множитель, который дает целую степень.
    6. Посмотреть, не появилось ли опять подобных слагаемых. Если да, то снова выполнить второе действие.

    В ситуации, когда задача не требует точного значения корня, его можно вычислить на калькуляторе. Бесконечную десятичную дробь, которая высветится в его окошке, округлить. Чаще всего это делают до сотых. А потом выполнять все операции для десятичных дробей.

    Это вся информация о том, как выполняется сложение корней. Примеры, расположенные ниже, проиллюстрируют вышесказанное.

    Первое задание

    Вычислить значение выражений:

    а) √2 + 3√32 + ½ √128 - 6√18;

    б) √75 - √147 + √48 - 1/5 √300;

    в) √275 - 10√11 + 2√99 + √396.

    а) Если следовать приведенному выше алгоритму, то видно, что для первых двух действий в этом примере ничего нет. Зато можно упростить некоторые подкоренные выражения.

    Например, 32 разложить на два множителя 2 и 16; 18 будет равно произведению 9 и 2; 128 — это 2 на 64. Учитывая это, выражение будет записано так:

    √2 + 3√(2 * 16) + ½ √(2 * 64) - 6 √(2 * 9).

    Теперь нужно вынести из-под знака радикала те множители, которые дают квадрат числа. Это 16=4 2 , 9=3 2 , 64=8 2 . Выражение примет вид:

    √2 + 3 * 4√2 + ½ * 8 √2 - 6 * 3√2.

    Нужно немного упростить запись. Для этого производится умножение коэффициентов перед знаками корня:

    √2 + 12√2 + 4 √2 - 12√2.

    В этом выражении все слагаемые оказались подобными. Поэтому их нужно просто сложить. В ответе получится: 5√2.

    б) Подобно предыдущему примеру, сложение корней начинается с их упрощения. Подкоренные выражения 75, 147, 48 и 300 будут представлены такими парами: 5 и 25, 3 и 49, 3 и 16, 3 и 100. В каждой из них имеется число, которое можно вынести из-под знака корня:

    5√5 - 7√3 + 4√3 - 1/5 * 10√3.

    После упрощения получается ответ: 5√5 - 5√3. Его можно оставить в таком виде, но лучше вынести общий множитель 5 за скобку: 5 (√5 - √3).

    в) И снова разложение на множители: 275 = 11 * 25, 99 = 11 * 9, 396 = 11 * 36. После вынесения множителей из-под знака корня имеем:

    5√11 - 10√11 + 2 * 3√11 + 6√11. После приведения подобных слагаемых получим результат: 7√11.

    Пример с дробными выражениями

    √(45/4) - √20 - 5√(1/18) - 1/6 √245 + √(49/2).

    На множители нужно будет разложить такие числа: 45 = 5 * 9, 20 = 4 * 5, 18 = 2 * 9, 245 = 5 * 49. Аналогично уже рассмотренным, нужно вынести множители из-под знака корня и упростить выражение:

    3/2 √5 - 2√5 - 5/ 3 √(½) - 7/6 √5 + 7 √(½) = (3/2 - 2 - 7/6) √5 - (5/3 - 7) √(½) = - 5/3 √5 + 16/3 √(½).

    Это выражение требует того, чтобы избавиться от иррациональности в знаменателе. Для этого нужно умножить на √2/√2 второе слагаемое:

    5/3 √5 + 16/3 √(½) * √2/√2 = - 5/3 √5 + 8/3 √2.

    Для полноты действий нужно выделить целую часть у множителей перед корнями. У первого она равна 1, у второго — 2.

    Сложение и вычитание корней - один из наиболее распространенных «камней преткновения» для тех, кто проходит курс математики (алгебры) в средней школе. Однако научиться правильно складывать и вычитать их очень важно, потому что примеры на сумму или разность корней входят в программу базового Единого Государственного Экзамена по дисциплине «математика».

    Для того чтобы освоить решение таких примеров, необходимо две вещи - разобраться в правилах, а также наработать практику. Решив один-два десятка типовых примеров, школьник доведет этот навык до автоматизма, и тогда ему уже будет нечего бояться на ЕГЭ. Начинать освоение арифметических действий рекомендуется со сложения, потому что складывать их немного проще, чем вычитывать.

    Что такое корень

    Проще всего объяснить это на примере квадратного корня. В математике имеется устоявшийся термин «возвести в квадрат». «Возвести в квадрат» означает однократно умножить конкретное число само на себя . Например, если возвести в квадрат 2, получится 4. Если возвести в квадрат 7, получится 49. Квадрат числа 9 равен 81. Таким образом, квадратный корень из 4 - это 2, из 49 - это 7, а из 81 - это 9.

    Как правило, обучение этой теме в математике начинается именно с квадратных корней. Для того, чтобы сходу определять его, учащийся средней школы должен наизусть знать таблицу умножения. Тем, кто нетвердо знает эту таблицу, приходится пользоваться подсказками. Обычно процесс извлечения корневого квадрата из числа приводится в виде таблицы на обложках многих школьных тетрадей по математике.

    Корни бывают следующих типов:

    • квадратные;
    • кубические (или так называемые третьей степени);
    • четвертой степени;
    • пятой степени.

    Правила сложения

    Для того чтобы успешно решить типовой пример, необходимо иметь в виду, что не все корневые числа можно складывать друг с другом . Чтобы их можно было сложить, их необходимо привести к единому образцу. Если это невозможно, значит, задача не имеет решения. Такие задачи тоже часто встречаются в учебниках математики в качестве своеобразной ловушки для учащихся.

    Не разрешается сложение в заданиях, когда подкоренные выражения отличаются друг от друга. Это можно проиллюстрировать на наглядном примере:

    • перед учеником стоит задача: сложить квадратный корень из 4 и из 9;
    • неопытный ученик, не знающий правила, обычно пишет: «корень из 4 + корень из 9=корень из 13».
    • доказать, что этот способ решения неправильный, очень просто. Для этого нужно найти квадратный корень из 13 и проверить, верно ли решен пример;
    • с помощью микрокалькулятора можно определить, что он составляет примерно 3,6. Теперь осталось проверить решение;
    • корень из 4=2, а из 9=3;
    • Сумма чисел «два» и «три» равняется пяти. Таким образом, данный алгоритм решения можно считать неверным.

    Если корни имеют одинаковую степень, но разные числовые выражения, он выносится за скобки, а в скобки вносится сумма двух подкоренных выражений . Таким образом, он извлекается уже из этой суммы.

    Алгоритм сложения

    Для того чтобы правильно решить простейшую задачу, необходимо:

    1. Определить, что именно требуют сложения.
    2. Разобраться, можно ли складывать значения друг с другом, руководствуясь существующими в математике правилами.
    3. Если они не подлежат сложению, нужно трансформировать их таким образом, чтобы их можно было складывать.
    4. Осуществив все необходимые преобразования, необходимо выполнить сложение и записать готовый ответ. Производить сложение можно в уме или с помощью микрокалькулятора, в зависимости от сложности примера.

    Что такое подобные корни

    Чтобы правильно решить пример на сложение, необходимо, в первую очередь, подумать о том, как можно его упростить. Для этого нужно обладать базовыми знаниями о том, что такое подобие.

    Умение определять подобные помогает быстро решать однотипные примеры на сложение, приводя их в упрощенный вид. Чтобы упростить типовой пример на сложение, необходимо:

    1. Найти подобные и выделить их в одну группу (или в несколько групп).
    2. Заново написать имеющийся пример таким образом, чтобы корни, которые имеют один и тот же показатель, шли четко друг за другом (это и называется «сгруппировать»).
    3. Далее следует еще раз написать выражение заново, на этот раз таким образом, чтобы подобные (у которых один и тот же показатель и одна и та же подкоренная цифра) тоже шли друг за другом.

    После этого упрощенный пример обычно легко поддается решению.

    Для того, чтобы правильно решить любой пример на сложение, необходимо четко представлять себе основные правила сложения, а также знать о том, что такое корень и каким он бывает.

    Иногда такие задачи с первого взгляда выглядят очень сложно, но обычно они легко решаются путем группировки подобных. Самое главное - практика, и тогда ученик начнет «щелкать задачи, как орешки». Сложение корней - один из самых важных разделов математики, поэтому учителя должны отводить достаточно времени на его изучение.

    Сейчас в школьной программе происходит, что-то не совсем понятно. Одно радует, что в математике все остается неизменной. Работа с корнями, а именно складывание и вычитание не очень сложное действие. Но у некоторых учеников вызывают определенные трудности.

    И в этой статье мы разберем правила, как складывать и вычитать квадратные корни.

    Вычитать и складывать квадратные корни можно если срабатывает условие, что у этих корней имеются одинаковые подкоренные выражения. Другими словами, мы можем проводить действия с 2√3 и 4√3, а не с 2√3 и 2√7. Но можно провести действия по упрощению подкоренного выражения, чтобы потом привести их к корням, которые будут иметь одинаковые подкоренные выражения. И только после этого уже начать складывать или вычитать.

    Теория складывания и вычитания квадратных корней

    Сам принцип очень простой. И составит из трех действий. Нужно упростить подкоренной выражение. Найти получившиеся одинаковые подкоренные выражения и сложить или вычесть корни.

    Как упростить подкоренное выражение

    Для этого нужно разложить подкоренное число, что бы состояло из двух множителей. Главное условие. Одно из этих чисел должно быть квадратным числом (пример: 25 или 9). После этого действия мы извлекаем корень из данного квадратного числа. И записываем это число перед нашим корнем, а под корнем у нас остается второй множитель.

    Например, 6√50 — 2√8 + 5√12

    6√50 = 6√(25 x 2) = (6 x 5)√2 = 30√2. Тут мы раскладываем 50 на два множителя 25 и 2. Потом из 25 мы извлекаем квадратный корень (получаем число 5) и выносим его из под корня. Далее 5 умножаем на 6 и получаем 30√2

    2√8 = 2√(4 x 2) = (2 x 2)√2 = 4√2. В данном примеры мы 8 раскладываем на два числа 4 и 2. Из 4 извлекаем корень и выносим получившееся число за корень и умножаем его на то число которое было уже за корнем.

    5√12 = 5√(4 x 3) = (5 x 2)√3 = 10√3. Тут мы, как и раньше число под корнем раскладываем на два числа 4 и 3. Из 4-х извлекаем корень. Получившееся число выносим за корень и перемножаем его на то число которое было за корнем.

    В итоге мы преобразовали уравнение 6√50 — 2√8 + 5√12 в такой вид 30√2 — 4√2 + 10√3

    Подчеркиваем корни у которых одинаковы подкоренные выражения

    В нашем примере 30√2 — 4√2 + 10√3 мы выделяем 30√2 и 4√2 Так, как у этих чисел одинаковое подкоренное число 2.
    Если в Вашем примере несколько одинаковых подкоренных выражений. Подчеркивайте одинаковые из них разными линиями.

    Складываем или вычитаем наши корни

    Теперь складываем или вычитаем числа которые имеют одинаковые подкоренные выражения. А то, что под корнем мы оставляем неизменным. Смысл в том, чтобы показать сколько всего корней с определенными подкоренными выражениями есть в заданном уравнении.

    В нашем примере 30√2 — 4√2 + 10√3 мы от 30 отнимаем 4 и получаем 26√2

    Ответ в нашем примере будет такой. 26√2 + 10√3

    Sabibon — самое интересное в интернете

    Что такое математический корень?

    Это действие возникло в противовес возведению в степень. Математика предполагает наличие двух противоположных операций. На сложение существует вычитание. Умножению противостоит деление. Обратное действие степени — это извлечение соответствующего корня.

    Если в степени стоит двойка, то и корень будет квадратным. Он является самым распространенным в школьной математике. У него даже нет указания, что он квадратный, то есть возле него не приписывается цифра 2. Математическая запись этого оператора (радикала) представлена на рисунке.

    Из описанного действия плавно вытекает его определение. Чтобы извлечь квадратный корень из некоторого числа, нужно выяснить, какое даст при умножении на себя подкоренное выражение. Это число и будет квадратным корнем. Если записать это математически, то получится следующее: х*х=х 2 =у, значит √у=х.

    Какие действия с ними можно выполнять?

    По своей сути корень — это дробная степень, у которой в числителе стоит единица. А знаменатель может быть любым. Например, у квадратного корня он равен двум. Поэтому все действия, которые можно выполнить со степенями, будут справедливы и для корней.

    И требования к этим действиям у них одинаковые. Если умножение, деление и возведение в степень не встречают затруднений у учеников, то сложение корней, как и их вычитание, иногда приводит в замешательство. А все потому что хочется выполнить эти операции без оглядки на знак корня. И здесь начинаются ошибки.

    По каким правилам выполняется их сложение и вычитание?

    Сначала нужно запомнить два категорических «нельзя»:

    • нельзя выполнять сложение и вычитание корней, как у простых чисел, то есть невозможно записать подкоренные выражения суммы под один знак и выполнять с ними математические операции;
    • нельзя складывать и вычитать корни с разными показателями, например квадратный и кубический.

    Наглядный пример первого запрета: √6 + √10 ≠ √16, но √(6 + 10) = √16 .

    Во втором случае лучше ограничиться упрощением самих корней. А в ответе оставить их сумму.

    Теперь к правилам

    1. Найти и сгруппировать подобные корни. То есть те, у которых не только стоят одинаковые числа под радикалом, но и они сами с одним показателем.
    2. Выполнить сложение корней, объединенных в одну группу первым действием. Оно легко осуществимо, потому что нужно только сложить значения, которые стоят перед радикалами.
    3. Извлечь корни в тех слагаемых, в которых подкоренное выражение образует целый квадрат. Другими словами, не оставлять ничего под знаком радикала.
    4. Упростить подкоренные выражения. Для этого нужно разложить их на простые множители и посмотреть, не дадут ли они квадрата какого-либо числа. Понятно, что это справедливо, если речь идет о квадратном корне. Когда показатель степени три или четыре, то и простые множители должны давать куб или четвертую степень числа.
    5. Вынести из-под знака радикала множитель, который дает целую степень.
    6. Посмотреть, не появилось ли опять подобных слагаемых. Если да, то снова выполнить второе действие.

    В ситуации, когда задача не требует точного значения корня, его можно вычислить на калькуляторе. Бесконечную десятичную дробь, которая высветится в его окошке, округлить. Чаще всего это делают до сотых. А потом выполнять все операции для десятичных дробей.

    Это вся информация о том, как выполняется сложение корней. Примеры, расположенные ниже, проиллюстрируют вышесказанное.

    Первое задание

    Вычислить значение выражений:

    а) √2 + 3√32 + ½ √128 — 6√18;

    б) √75 — √147 + √48 — 1/5 √300;

    в) √275 — 10√11 + 2√99 + √396.

    а) Если следовать приведенному выше алгоритму, то видно, что для первых двух действий в этом примере ничего нет. Зато можно упростить некоторые подкоренные выражения.

    Например, 32 разложить на два множителя 2 и 16; 18 будет равно произведению 9 и 2; 128 — это 2 на 64. Учитывая это, выражение будет записано так:

    √2 + 3√(2 * 16) + ½ √(2 * 64) — 6 √(2 * 9).

    Теперь нужно вынести из-под знака радикала те множители, которые дают квадрат числа. Это 16=4 2 , 9=3 2 , 64=8 2 . Выражение примет вид:

    √2 + 3 * 4√2 + ½ * 8 √2 — 6 * 3√2.

    Нужно немного упростить запись. Для этого производится умножение коэффициентов перед знаками корня:

    √2 + 12√2 + 4 √2 — 12√2.

    В этом выражении все слагаемые оказались подобными. Поэтому их нужно просто сложить. В ответе получится: 5√2.

    б) Подобно предыдущему примеру, сложение корней начинается с их упрощения. Подкоренные выражения 75, 147, 48 и 300 будут представлены такими парами: 5 и 25, 3 и 49, 3 и 16, 3 и 100. В каждой из них имеется число, которое можно вынести из-под знака корня:

    5√5 — 7√3 + 4√3 — 1/5 * 10√3.

    После упрощения получается ответ: 5√5 — 5√3. Его можно оставить в таком виде, но лучше вынести общий множитель 5 за скобку: 5 (√5 — √3).

    в) И снова разложение на множители: 275 = 11 * 25, 99 = 11 * 9, 396 = 11 * 36. После вынесения множителей из-под знака корня имеем:

    5√11 — 10√11 + 2 * 3√11 + 6√11. После приведения подобных слагаемых получим результат: 7√11.

    Пример с дробными выражениями

    √(45/4) — √20 — 5√(1/18) — 1/6 √245 + √(49/2).

    На множители нужно будет разложить такие числа: 45 = 5 * 9, 20 = 4 * 5, 18 = 2 * 9, 245 = 5 * 49. Аналогично уже рассмотренным, нужно вынести множители из-под знака корня и упростить выражение:

    3/2 √5 — 2√5 — 5/ 3 √(½) — 7/6 √5 + 7 √(½) = (3/2 — 2 — 7/6) √5 — (5/3 — 7) √(½) = — 5/3 √5 + 16/3 √(½).

    Это выражение требует того, чтобы избавиться от иррациональности в знаменателе. Для этого нужно умножить на √2/√2 второе слагаемое:

    — 5/3 √5 + 16/3 √(½) * √2/√2 = — 5/3 √5 + 8/3 √2.

    Для полноты действий нужно выделить целую часть у множителей перед корнями. У первого она равна 1, у второго — 2.

    Квадратным корнем из числа x называют число a, которое при умножении само на себя дает число x: a * a = a^2 = x, √x = a. Как и над любыми числами, над квадратными корнями можно выполнять арифметические операции сложения и вычитания.

    Инструкция

    • Во-первых, при сложении квадратных корней попробуйте извлечь эти корни. Это будет возможно, если числа под знаком корня являются полными квадратами. Например, пусть задано выражение √4 + √9. Первое число 4 – это квадрат числа 2. Второе число 9 – это квадрат числа 3. Таким образом получается, что: √4 + √9 = 2 + 3 = 5.
    • Если под знаком корня нет полных квадратов, то попробуйте вынести из под знака корня множитель числа. Например, пусть дано выражение √24 + √54. Разложите числа на множители: 24 = 2 * 2 * 2 * 3, 54 = 2 * 3 * 3 * 3. В числе 24 имеется множитель 4, который можно вынести из под знака квадратного корня. В числе 54 - множитель 9. Таким образом, получается что: √24 + √54 = √(4 * 6) + √(9 * 6) = 2 * √6 + 3 * √6 = 5 * √6. В данном примере в результате выноса множителя из под знака корня получилось упростить заданное выражение.
    • Пусть сумма двух квадратных корней является знаменателем дроби, например, A / (√a + √b). И пусть перед вами стоит задача «избавиться от иррациональности в знаменателе». Тогда можно воспользоваться следующим способом. Умножьте числитель и знаменатель дроби на выражение √a - √b. Таким образом в знаменателе получится формула сокращенного умножения: (√a + √b) * (√a - √b) = a – b. По аналогии, если в знаменателе дана разность корней: √a - √b, то числитель и знаменатель дроби необходимо умножить на выражение √a + √b. Для примера, пусть дана дробь 4 / (√3 + √5) = 4 * (√3 - √5) / ((√3 + √5) * (√3 - √5)) = 4 * (√3 - √5) / (-2) = 2 * (√5 - √3).
    • Рассмотрите более сложный пример избавления от иррациональности в знаменателе. Пусть дана дробь 12 / (√2 + √3 + √5). Необходимо умножить числитель и знаменатель дроби на выражение √2 + √3 - √5:
      12 / (√2 + √3 + √5) = 12 * (√2 + √3 - √5) / ((√2 + √3 + √5) * (√2 + √3 - √5)) = 12 * (√2 + √3 - √5) / (2 * √6) = √6 * (√2 + √3 - √5) = 2 * √3 + 3 * √2 - √30.
    • И наконец, если вам необходимо только приблизительное значение, то можно посчитать значения квадратных корней на калькуляторе. Вычислите значения отдельно для каждого числа и запишите с необходимой точностью (например, два знака после запятой). А затем совершите требуемые арифметические операции, как с обычными числами. Например, пусть необходимо узнать приблизительное значение выражения √7 + √5 ≈ 2,65 + 2,24 = 4,89.