За счет чего образуется центробежная сила. В чем разница между центробежной и центростремительной силой

Лабораторная работа № 1.9

Темы для изучения

Центробежная сила, вращательное движение, угловая скорость, сила инерции.

Принцип

Тело с переменной массой движется по окружности с переменным радиусом и переменной угловой скоростью. Устанавливается зависимость центробежной силы тела от вышеуказанных параметров.

Оборудование

Аппарат для изучения центробежной силы 11008.00 1

Тележка 11060.00 1

Крепежный болт 03949.00 1

Лабораторный двигатель, ~220 В 11030.93 1

Приводной механизм, 30/1

для лабораторного двигателя 11029.00 1

Подшипниковый блок 02845.00 1

Приводной ремень 03981.00 1

Штатив с отверстием, l=100 мм 02036.01 1

Цилиндрическая опора 02006.55 1

Источник питания, 5В/2,4 А 11076.99 1

Держатель для пружинных весов 03065.20 1

Штатив -PASS-, прямоугольный, l=250 мм 02025.55 1

Зажим-насадка

для круглых или прямоугольных стержней 02043.00 2

Настольный зажим -PASS- 02010.00 2

Леса, = 100 м 02090.00 1

Динамометр, 2 Н 03065.03 1

Гиря с прорезью, 10 г, черная 02205.01 4

Гиря с прорезью, 50 г, черная 02206.01 2

Световой барьер со счетчиком 11207.30 1

Дополнительно:

Лабораторный двигатель, ~115 В 11030.90 1

Цель

Определить зависимость центробежной силы от:

угловой скорости;

расстояния от оси вращения до центра тяжести тележки.

Рис. 1: Экспериментальная установка для измерения центробежной силы.

Установка и ход работы

Соберите установку как показано на Рис. 1. Прикрепите красный указатель на стержень, установленный в центре тележки. С его помощью можно определить расстояние от оси вращения до центра тяжести тележки. На конце дорожки для изучения центробежной силы между направляющими стержнями приклейте отметку для светового барьера. При измерении времени полного оборота переключитесь в режим .

Убедитесь, что тележка не соприкасается со световым барьером при движении по максимальному радиусу.

С увеличением угловой скорости увеличивается радиус благодаря изменению центробежной силы, которая компенсируется действием динамометра.

Определение зависимости центробежной силы от массы.

Добавьте к тележке дополнительные гири. Аппарат для изучения центробежной силы вращается с постоянной скоростью и данной массой. Определите возникающую при этом силу при помощи динамометра. С помощью блока тележка подсоединяется нитью к динамометру (длина нити примерно 26 см) и крючку. Отведите динамометр в крайнее нижнее положение. Постоянная угловая скорость во время всего эксперимента определяется частотой вращения мотора. Определите силу для тележки без дополнительной нагрузки. Положение красного указателя отметьте кусочком липкой ленты. Для этого остановите мотор, выключив источник питания. Положите на тележку дополнительные гири и растяните динамометр так, чтобы тележка остановилась перед блоком. Включите источник питания. Зафиксируйте динамометр в крайнем верхнем положении и оттяните его вниз (с интервалом в 1 см). При этом указатель на тележке должен приблизиться к отмеченному положению «». Определите соответствующую силу , когда указатель совпадет с положением «».

Замечание

Если тележка движется за отметкой, выключите мотор. Подтяните динамометр вверх и перезапустите мотор.

Определение зависимости центробежной силы от угловой скорости.

В этой части эксперимента масса тележки остается постоянной. Отметьте заранее определенный радиус (например, =20 см) кусочком липкой ленты. При различных угловых скоростях тележка достигает положения (регулируйте динамометр, как в предыдущей части опыта). Определите соответствующую силу . Зная период вращения , рассчитайте угловую скорость .

Определение зависимости центробежной силы от массы тележки и расстояния до оси вращения.

Масса тележки остается постоянной. Постоянная угловая скорость в течении всего цикла задается частотой вращения мотора. Увеличьте радиус окружности , передвинув динамометр. Определите соответствующую силу и радиус .

Рис. 2: Масса тела в подвижной системе координат.

Теория и расчет

Для системы координат, которая вращается с угловой скоростью уравнение движения материальной точки (с массой и радиус-вектором ) имеет вид:

(1)

Сила тяжести уравновешивается реакцией дорожки. Тележка находится в состоянии покоя в подвижной системе координат, которая вращается с постоянной угловой скоростью (= 0; = const = 0; = const.).

Рис. 3: Зависимость центробежной силы от массы .

Во вращающейся системе отсчета наблюдатель испытывает на себе действие силы, уводящей его от оси вращения.

Вам, наверное, доводилось испытывать неприятные ощущения, когда машина, в которой вы едете, входила в крутой вираж. Казалось, что сейчас вас так и выбросит на обочину. И если вспомнить законы механики Ньютона , то получается, что раз вас буквально вдавливало в дверцу, значит на вас действовала некая сила. Ее обычно называют «центробежная сила». Именно из-за центробежной силы так захватывает дух на крутых поворотах, когда эта сила прижимает вас к бортику автомобиля. (Между прочим, этот термин, происходящий от латинских слов centrum («центр») и fugus («бег»), ввел в научный обиход в 1689 году Исаак Ньютон.)

Стороннему наблюдателю, однако, всё будет представляться иначе. Когда машина закладывает вираж, наблюдатель сочтет, что вы просто продолжаете прямолинейное движение, как это и делало бы любое тело, на которое не оказывает действия никакая внешняя сила; а автомобиль отклоняется от прямолинейной траектории. Такому наблюдателю покажется, что это не вас прижимает к дверце машины, а, наоборот, дверца машины начинает давить на вас.

Впрочем, никаких противоречий между этими двумя точками зрения нет. В обеих системах отсчета события описываются одинаково и для этого описания используются одни и те же уравнения. Единственным отличием будет интерпретация происходящего внешним и внутренним наблюдателем. В этом смысле центробежная сила напоминает силу Кориолиса (см. Эффект Кориолиса), которая также действует во вращающихся системах отсчета.

Поскольку не все наблюдатели видят действие этой силы, физики часто называют центробежную силу фиктивной силой или псевдосилой . Однако мне кажется, что такая интерпретация может вводить в заблуждение. В конце концов, едва ли можно назвать фиктивной силу, которая ощутимо придавливает вас к дверце автомобиля. Просто всё дело в том, что, продолжая двигаться по инерции, ваше тело стремится сохранить прямолинейное направление движения, в то время как автомобиль от него уклоняется и из-за этого давит на вас.

Чтобы проиллюстрировать эквивалентность двух описаний центробежной силы, давайте немного поупражняемся в математике. Тело, движущееся с постоянной скоростью по окружности, движется с ускорением, поскольку оно всё время меняет направление. Это ускорение равно v 2 /r , где v - скорость, r - радиус окружности. Соответственно, наблюдатель, находящийся в движущейся по окружности системе отсчета, будет испытывать центробежную силу, равную mv 2 /r .

Теперь обобщим сказанное: любое тело, движущееся по криволинейной траектории, - будь то пассажир в машине на вираже, мяч на веревочке, который вы раскручиваете над головой, или Земля на орбите вокруг Солнца - испытывает на себе действие силы, которая обусловлена давлением дверцы автомобиля, натяжением веревки или гравитационным притяжением Солнца. Назовем эту силу F . С точки зрения того, кто находится во вращающейся системе отсчета, тело не движется. Это означает, что внутренняя сила F уравновешивается внешней центробежной силой:

Однако с точки зрения наблюдателя, находящегося вне вращающейся системы отсчета, тело (вы, мяч, Земля) движется равноускоренно под воздействием внешней силы. Согласно второму закону механики Ньютона, отношение между силой и ускорением в этом случае F = ma . Подставив в это уравнение формулу ускорения для тела, движущегося по окружности, получим:

F = ma = mv 2 /r

Но тем самым мы получили в точности уравнение для наблюдателя, находящегося во вращающейся системе отсчета. Значит, оба наблюдателя приходят к идентичным результатам относительно величины действующей силы, хотя и исходят из разных предпосылок.

Это очень важная иллюстрация того, что представляет собою механика как наука. Наблюдатели, находящиеся в различных системах отсчета, могут описывать происходящие явления совершенно по-разному. Однако, сколь бы принципиальными ни были различия в подходах к описанию наблюдаемых ими явлений, уравнения, их описывающие, окажутся идентичными. А это - не что иное, как принцип инвариантности законов природы, лежащий в основе

Во вращающейся системе отсчета наблюдатель испытывает на себе действие силы, уводящей его от оси вращения.

Вам, наверное, доводилось испытывать неприятные ощущения, когда машина, в которой вы едете, входила в крутой вираж. Казалось, что сейчас вас так и выбросит на обочину. И если вспомнить законы механики Ньютона , то получается, что раз вас буквально вдавливало в дверцу, значит на вас действовала некая сила. Ее обычно называют «центробежная сила». Именно из-за центробежной силы так захватывает дух на крутых поворотах, когда эта сила прижимает вас к бортику автомобиля. (Между прочим, этот термин, происходящий от латинских слов centrum («центр») и fugus («бег»), ввел в научный обиход в 1689 году Исаак Ньютон.)

Стороннему наблюдателю, однако, всё будет представляться иначе. Когда машина закладывает вираж, наблюдатель сочтет, что вы просто продолжаете прямолинейное движение, как это и делало бы любое тело, на которое не оказывает действия никакая внешняя сила; а автомобиль отклоняется от прямолинейной траектории. Такому наблюдателю покажется, что это не вас прижимает к дверце машины, а, наоборот, дверца машины начинает давить на вас.

Впрочем, никаких противоречий между этими двумя точками зрения нет. В обеих системах отсчета события описываются одинаково и для этого описания используются одни и те же уравнения. Единственным отличием будет интерпретация происходящего внешним и внутренним наблюдателем. В этом смысле центробежная сила напоминает силу Кориолиса (см. Эффект Кориолиса), которая также действует во вращающихся системах отсчета.

Поскольку не все наблюдатели видят действие этой силы, физики часто называют центробежную силу фиктивной силой или псевдосилой . Однако мне кажется, что такая интерпретация может вводить в заблуждение. В конце концов, едва ли можно назвать фиктивной силу, которая ощутимо придавливает вас к дверце автомобиля. Просто всё дело в том, что, продолжая двигаться по инерции, ваше тело стремится сохранить прямолинейное направление движения, в то время как автомобиль от него уклоняется и из-за этого давит на вас.

Чтобы проиллюстрировать эквивалентность двух описаний центробежной силы, давайте немного поупражняемся в математике. Тело, движущееся с постоянной скоростью по окружности, движется с ускорением, поскольку оно всё время меняет направление. Это ускорение равно v 2 /r , где v — скорость, а r — радиус окружности. Соответственно, наблюдатель, находящийся в движущейся по окружности системе отсчета, будет испытывать центробежную силу, равную mv 2 /r.

Теперь обобщим сказанное: любое тело, движущееся по криволинейной траектории, — будь то пассажир в машине на вираже, мяч на веревочке, который вы раскручиваете над головой, или Земля на орбите вокруг Солнца — испытывает на себе действие силы, которая обусловлена давлением дверцы автомобиля, натяжением веревки или гравитационным притяжением Солнца. Назовем эту силу F . С точки зрения того, кто находится во вращающейся системе отсчета, тело не движется. Это означает, что внутренняя сила F уравновешивается внешней центробежной силой:

F = mv 2 /r

Однако с точки зрения наблюдателя, находящегося вне вращающейся системы отсчета, тело (вы, мяч, Земля) движется равноускоренно под воздействием внешней силы. Согласно второму закону механики Ньютона, отношение между силой и ускорением в этом случае F = ma . Подставив в это уравнение формулу ускорения для тела, движущегося по окружности, получим:

F = ma = mv 2 /r

Но тем самым мы получили в точности уравнение для наблюдателя, находящегося во вращающейся системе отсчета. Значит, оба наблюдателя приходят к идентичным результатам относительно величины действующей силы, хотя и исходят из разных предпосылок.

Это очень важная иллюстрация того, что представляет собою механика как наука. Наблюдатели, находящиеся в различных системах отсчета, могут описывать происходящие явления совершенно по-разному. Однако, сколь бы принципиальными ни были различия в подходах к описанию наблюдаемых ими явлений, уравнения, их описывающие, окажутся идентичными. А это — не что иное, как принцип инвариантности законов природы, лежащий в основе