Как рассчитать коэффициент корреляции в Excel. Числовой коэффициент выражения: определение, примеры

В математике одним из параметров, описывающих положение прямой на декартовой плоскости координат, является угловой коэффициент этой прямой. Этот параметр характеризует наклон прямой к оси абцисс. Чтобы понять, как найти угловой коэффициент, сначала вспомним общий вид уравнения прямой в системе координат XY.

В общем виде любую прямую можно представить выражением ax+by=c, где a, b и c - произвольные действительные числа, но обязательно a 2 + b 2 ≠ 0.

Подобное уравнение с помощью несложных преобразований можно довести до вида y=kx+d, в котором k и d - действительные числа. Число k является угловым коэффициентом, а само уравнение прямой подобного вида называется уравнением с угловым коэффициентом. Получается, что для нахождения углового коэффициента, необходимо просто привести исходное уравнение к указанному выше виду. Для более полного понимания рассмотрим конкретный пример:

Задача: Найти угловой коэффициент линии, заданной уравнением 36x - 18y = 108

Решение: Преобразуем исходное уравнение.

Ответ: Искомый угловой коэффициент данной прямой равен 2.

В случае, если в ходе преобразований уравнения мы получили выражение типа x = const и не можем в результате представить y в виде функции x, то мы имеем дело с прямой, параллельной оси Х. Угловой коэффициент подобной прямой равен бесконечности.

Для прямых, которых выражены уравнением типа y = const, угловой коэффициент равняется нулю. Это характерно для прямых, параллельных оси абцисс. Например:

Задача: Найти угловой коэффициент линии, заданной уравнением 24x + 12y - 4(3y + 7) = 4

Решение: Приведем исходное уравнение к общему виду

24x + 12y - 12y + 28 = 4

Из полученного выражения выразить y невозможно, следовательно угловой коэффициент данной прямой равен бесконечности, а сама прямая будет параллельна оси Y.

Геометрический смысл

Для лучшего понимания обратимся к картинке:

На рисунке мы видим график функции типа y = kx. Для упрощения примем коэффициент с = 0. В треугольнике ОАВ отношение стороны ВА к АО будет равно угловому коэффициенту k. Вместе с тем отношение ВА/АО - это тангенс острого угла α в прямоугольном треугольнике ОАВ. Получается, что угловой коэффициент прямой равняется тангенсу угла, который составляет эта прямая с осью абцисс координатной сетки.

Решая задачу, как найти угловой коэффициент прямой, мы находим тангенс угла между ней и осью Х сетки координат. Граничные случаи, когда рассматриваемая прямая параллельна осям координат, подтверждают вышенаписанное. Действительно для прямой, описанной уравнением y=const, угол между ней и осью абцисс равен нулю. Тангенс нулевого угла также равен нулю и угловой коэффициент тоже равен нулю.

Для прямых, перпендикулярных оси абцисс и описываемых уравнением х=const, угол между ними и осью Х равен 90 градусов. Тангенс прямого угла равен бесконечности, так же и угловой коэффициент подобных прямых равен бесконечности, что подтверждает написанное выше.

Угловой коэффициент касательной

Распространенной, часто встречающейся на практике, задачей является также нахождение углового коэффициента касательной к графику функции в некоторой точке. Касательная - это прямая, следовательно к ней также применимо понятие углового коэффициента.

Чтобы разобраться, как найти угловой коэффициент касательной, нам будет необходимо вспомнить понятие производной. Производная от любой функции в некоторой точке - это константа, численно равная тангенсу угла, который образуется между касательной в указанной точке к графику этой функции и осью абцисс. Получается, что для определения углового коэффициента касательной в точке x 0 , нам необходимо рассчитать значение производной исходной функции в этой точке k = f"(x 0). Рассмотрим на примере:

Задача: Найти угловой коэффициент линии, касательной к функции y = 12x 2 + 2xe x при х = 0,1.

Решение: Найдем производную от исходной функции в общем виде

y"(0,1) = 24 . 0,1 + 2 . 0,1 . e 0,1 + 2 . e 0,1

Ответ: Искомый угловой коэффициент в точке х = 0,1 равен 4,831

В сегодняшней статье речь пойдет о том, как переменные могут быть связаны друг с другом. С помощью корреляции мы сможем определить, существует ли связь между первой и второй переменной. Надеюсь, это занятие покажется вам не менее увлекательным, чем предыдущие!

Корреляция измеряет мощность и направление связи между x и y. На рисунке представлены различные типы корреляции в виде графиков рассеяния упорядоченных пар (x, y). По традиции переменная х размещается на горизонтальной оси, а y - на вертикальной.

График А являет собой пример положительной линейной корреляции: при увеличении х также увеличивается у, причем линейно. График В показывает нам пример отрицательной линейной корреляции, на котором при увеличении х у линейно уменьшается. На графике С мы видим отсутствие корреляции между х и у. Эти переменные никоим образом не влияют друг на друга.

Наконец, график D - это пример нелинейных отношений между переменными. По мере увеличения х у сначала уменьшается, потом меняет направление и увеличивается.

Оставшаяся часть статьи посвящена линейным взаимосвязям между зависимой и независимой переменными.

Коэффициент корреляции

Коэффициент корреляции, r, предоставляет нам как силу, так и направление связи между независимой и зависимой переменными. Значения r находятся в диапазоне между — 1.0 и + 1.0. Когда r имеет положительное значение, связь между х и у является положительной (график A на рисунке), а когда значение r отрицательно, связь также отрицательна (график В). Коэффициент корреляции, близкий к нулевому значению, свидетельствует о том, что между х и у связи не существует график С).

Сила связи между х и у определяется близостью коэффициента корреляции к - 1.0 или +- 1.0. Изучите следующий рисунок.

График A показывает идеальную положительную корреляцию между х и у при r = + 1.0. График В - идеальная отрицательная корреляция между х и у при r = — 1.0. Графики С и D - примеры более слабых связей между зависимой и независимой переменными.

Коэффициент корреляции, r, определяет, как силу, так и направление связи между зависимой и независимой переменными. Значения r находятся в диапазоне от — 1.0 (сильная отрицательная связь) до + 1.0 (сильная положительная связь). При r= 0 между переменными х и у нет никакой связи.

Мы можем вычислить фактический коэффициент корреляции с помощью следующего уравнения:

Ну и ну! Я знаю, что выглядит это уравнение как страшное нагромождение непонятных символов, но прежде чем ударяться в панику, давайте применим к нему пример с экзаменационной оценкой. Допустим, я хочу определить, существует ли связь между количеством часов, посвященных студентом изучению статистики, и финальной экзаменационной оценкой. Таблица, представленная ниже, поможет нам разбить это уравнение на несколько несложных вычислений и сделать их более управляемыми.

Как видите, между числом часов, посвященных изучению предмета, и экзаменационной оценкой существует весьма сильная положительная корреляция. Преподаватели будут весьма рады узнать об этом.

Какова выгода устанавливать связь между подобными переменными? Отличный вопрос. Если обнаруживается, что связь существует, мы можем предугадать экзаменационные результаты на основе определенного количества часов, посвященных изучению предмета. Проще говоря, чем сильнее связь, тем точнее будет наше предсказание.

Использование Excel для вычисления коэффициентов корреляции

Я уверен, что, взглянув на эти ужасные вычисления коэффициентов корреляции, вы испытаете истинную радость, узнав, что программа Excel может выполнить за вас всю эту работу с помощью функции КОРРЕЛ со следующими характеристиками:

КОРРЕЛ (массив 1; массив 2),

массив 1 = диапазон данных для первой переменной,

массив 2 = диапазон данных для второй переменной.

Например, на рисунке показана функция КОРРЕЛ, используемая при вычислении коэффициента корреляции для примера с экзаменационной оценкой.

Коэффициент пропорциональности (линейный коэффициент пропорциональности) равен отношению двух соответствующих сторон подобных фигур. Подобные фигуры – это фигуры одинаковой формы, но разных размеров. Коэффициент пропорциональности используется для решения основных геометрических задач. Коэффициент пропорциональности можно использовать для вычисления длин неизвестных сторон. С другой стороны, по соответствующим сторонам можно вычислить коэффициент пропорциональности. Такие вычисления связаны с операцией умножения или с упрощением дробей.

Шаги

Вычисление коэффициента пропорциональности подобных фигур

    Убедитесь, что фигуры подобны. У таких фигур все углы равны, а стороны соотносятся в некой пропорции. Подобные фигуры имеют одинаковую форму, но одна фигура больше другой.

    • В задаче должно быть сказано, что фигуры подобны, или что у них равные углы, или что стороны пропорциональны, или что одна фигура пропорциональна другой.
  1. Найдите соответствующие стороны обеих фигур. Возможно, понадобится повернуть или зеркально отразить одну из фигур, чтобы выровнять обе фигуры и определить соответствующие стороны. Как правило, в задачах даются длины соответствующих сторон; в противном случае измерьте их. Если не знать значений хотя бы пары соответствующих сторон, нельзя найти коэффициент пропорциональности.

    • Например, дан треугольник, основание которого равно 15 см, и подобный треугольник с основанием, равным 10 см.
  2. Запишите отношение. У каждой пары подобных фигур есть два коэффициента пропорциональности: один используется при увеличении размера, а другой – при уменьшении. Если размер меньшей фигуры увеличивается до размера большей фигуры, используйте отношение: коэффициент пропорциональности = (сторона большей фигуры)/(сторона меньшей фигуры). Если размер большей фигуры уменьшается до размера меньшей фигуры, используйте отношение: коэффициент пропорциональности = (сторона меньшей фигуры)/(сторона большей фигуры).

    • Например, если треугольник с основанием 15 см уменьшается до треугольника с основанием 10 см, используйте отношение: коэффициент пропорциональности = (сторона меньшей фигуры)/(сторона большей фигуры).
      Подставив соответствующие значения, вы получите: коэффициент пропорциональности = .
  3. Упростите отношение. Упрощенное отношение (дробь) является коэффициентом пропорциональности. При уменьшении размера коэффициент пропорциональности представляет собой правильную дробь. При увеличении размера коэффициент пропорциональности представляет собой целое число или неправильную дробь, которую можно преобразовать в десятичную дробь.

    • Например, отношение 10 15 {\displaystyle {\frac {10}{15}}} упрощается до . Таким образом, коэффициент пропорциональности двух треугольников с основаниями 15 см и 10 см равен 2 3 {\displaystyle {\frac {2}{3}}} .

    Вычисление сторон по коэффициенту пропорциональности

    1. Найдите значения сторон фигуры. Значения сторон одной из подобных фигур будут даны; в противном случае измерьте их. Если стороны одной из подобных фигур неизвестны, нельзя вычислить стороны второй фигуры.

      • Например, дан прямоугольный треугольник, катеты которого равны 4 см и 3 см, а гипотенуза равна 5 см.
    2. Выясните, будет ли подобная фигура больше или меньше данной. Если больше, стороны будут больше, а коэффициент пропорциональности представляет собой целое число, неправильную или десятичную дробь. Если подобная фигура меньше данной, стороны будут меньше, а коэффициент пропорциональности представляет собой правильную дробь.

      • Например, если коэффициент пропорциональности равен 2, подобная фигура больше данной.
    3. Умножьте значение одной стороны на коэффициент пропорциональности. Коэффициент пропорциональности должен быть дан. Если умножить сторону на коэффициент пропорциональности, можно найти значение соответствующей стороны подобной фигуры.

      • Например, если гипотенуза прямоугольного треугольника равна 5 см, а коэффициент пропорциональности равен 2, гипотенуза подобного треугольника вычисляется так: 5 × 2 = 10 {\displaystyle 5\times 2=10} . Таким образом, гипотенуза подобного треугольника равна 10 см.
    4. Найдите значения остальных сторон подобной фигуры. Для этого умножьте известные значения сторон на коэффициент пропорциональности. Вы получите значения соответствующих сторон подобной фигуры.

      • Например, если основание прямоугольного треугольника равно 4 см, а коэффициент пропорциональности равен 2, основание подобного треугольника вычисляется так: 4 × 2 = 8 {\displaystyle 4\times 2=8} . Таким образом, основание подобного треугольника равно 8 см. Если катет прямоугольного треугольника равен 3 см, а коэффициент пропорциональности равен 2, катет подобного треугольника вычисляется так: 3 × 2 = 6 {\displaystyle 3\times 2=6} . Таким образом, катет подобного треугольника равен 6 см.

    Примеры решения задач

    1. Задача 1. Найдите коэффициент пропорциональности следующих подобных фигур: прямоугольник с шириной 6 см и прямоугольник с шириной 54 см.

      • Запишите отношение на основе двух значений ширины. При увеличении размера отношение запишется так: коэффициент пропорциональности = . При уменьшении размера отношение запишется так: коэффициент пропорциональности = .
      • Упростите отношение. Отношение 54 6 {\displaystyle {\frac {54}{6}}} упрощается до 9 1 = 9 {\displaystyle {\frac {9}{1}}=9} . Отношение 6 54 {\displaystyle {\frac {6}{54}}} упрощается до . Таким образом, коэффициент пропорциональности двух прямоугольников равен 9 {\displaystyle 9} или 1 9 {\displaystyle {\frac {1}{9}}} .
    2. Задача 2. Сторона неправильного многоугольника равна 14 см. Сторона подобного многоугольника равна 8 см. Найдите коэффициент пропорциональности.

«Числовой коэффициент », или просто «коэффициент » - термин, который подразумевает под собой одно и то же математическое понятие. Усвоить, в чем смысл термина, очень просто, а найти числовой коэффициент на конкретном примере еще легче. Но для начала разберемся с официальным определением.

Что называют математическим числовым коэффициентом?

Согласно учебнику математики, если выражение состоит из одного числа и нескольких буквенных обозначений, умноженных друг на друга, то данное число и будет коэффициентом всего выражения. При этом количество букв не имеет значения - число может быть умножено на одну букву, на две или сразу на пять, оно все равно остается коэффициентом.

Например, рассмотрим следующие выражения:

  • 5*a. В этом примере присутствует одно число - «5» и одна буква «а», и они перемножены друг на друга. Соответственно, число «5» будет коэффициентом всего выражения.
  • 7*b*c. Здесь мы видим выражение из одного числа и сразу двух буквенных обозначений. Но поскольку перемножение между ними сохраняется, то число «7» также остается коэффициентом.
  • 6*9*a*b. В данном случае мы видим два буквенных обозначения - и целых два числа. Однако ситуации это не меняет, ведь принцип перемножения по-прежнему присутствует. Чтобы узнать коэффициент, нужно просто взять произведение «6» и «9», то есть «54», и переписать выражение как 54*a*b. Число «54» будет коэффициентом выражения.

Необходимо напомнить, что последнее правило распространяется и на выражения, где числовые обозначения стоят не друг рядом с другом, а разделены буквами. Например, 2*c*4*a - мы можем смело переписывать данное выражение в виде 2*4*с*а, потому что при умножении не имеет значения, в каком порядке стоят множители. И таким образом, коэффициент по-прежнему находится легко и просто - это будет число «8».

Не стоит теряться, если в задаче предлагается найти коэффициент для буквенного выражения без чисел - например, y*z. В данном случае всегда используется число «1» - поскольку выражение из примера можно записать в виде 1*y*z. Коэффициент находится в выражениях и с положительными, и с отрицательными множителями.

В каких случаях найти коэффициент для всего выражения нельзя?

Общий коэффициент не может быть найден, если предусмотрены другие действия, помимо умножения. Например, если взять 3*с + а, то число «3» будет коэффициентом лишь для одного из слагаемых, но никак не для всего выражения.

Одним из основных статистических показателей последовательности чисел является коэффициент вариации. Для его нахождения производятся довольно сложные расчеты. Инструменты Microsoft Excel позволяют значительно облегчить их для пользователя.

Этот показатель представляет собой отношение стандартного отклонения к среднему арифметическому. Полученный результат выражается в процентах.

В Экселе не существует отдельно функции для вычисления этого показателя, но имеются формулы для расчета стандартного отклонения и среднего арифметического ряда чисел, а именно они используются для нахождения коэффициента вариации.

Шаг 1: расчет стандартного отклонения

Стандартное отклонение, или, как его называют по-другому, среднеквадратичное отклонение, представляет собой квадратный корень из . Для расчета стандартного отклонения используется функция СТАНДОТКЛОН . Начиная с версии Excel 2010 она разделена, в зависимости от того, по генеральной совокупности происходит вычисление или по выборке, на два отдельных варианта: СТАНДОТКЛОН.Г и СТАНДОТКЛОН.В .

Синтаксис данных функций выглядит соответствующим образом:

СТАНДОТКЛОН(Число1;Число2;…)
= СТАНДОТКЛОН.Г(Число1;Число2;…)
= СТАНДОТКЛОН.В(Число1;Число2;…)


Шаг 2: расчет среднего арифметического

Среднее арифметическое является отношением общей суммы всех значений числового ряда к их количеству. Для расчета этого показателя тоже существует отдельная функция – СРЗНАЧ . Вычислим её значение на конкретном примере.


Шаг 3: нахождение коэффициента вариации

Теперь у нас имеются все необходимые данные для того, чтобы непосредственно рассчитать сам коэффициент вариации.


Таким образом мы произвели вычисление коэффициента вариации, ссылаясь на ячейки, в которых уже были рассчитаны стандартное отклонение и среднее арифметическое. Но можно поступить и несколько по-иному, не рассчитывая отдельно данные значения.


Существует условное разграничение. Считается, что если показатель коэффициента вариации менее 33%, то совокупность чисел однородная. В обратном случае её принято характеризовать, как неоднородную.

Как видим, программа Эксель позволяет значительно упростить расчет такого сложного статистического вычисления, как поиск коэффициента вариации. К сожалению, в приложении пока не существует функции, которая высчитывала бы этот показатель в одно действие, но при помощи операторов СТАНДОТКЛОН и СРЗНАЧ эта задача очень упрощается. Таким образом, в Excel её может выполнить даже человек, который не имеет высокого уровня знаний связанных со статистическими закономерностями.