Как высчитать среднее квадратичное отклонение. Методы и способы формирования выборочной совокупности

Среднеквадрати́ческое отклоне́ние (синонимы: среднее квадрати́ческое отклоне́ние , среднеквадрати́чное отклоне́ние , квадрати́чное отклоне́ние ; близкие термины: станда́ртное отклоне́ние , станда́ртный разбро́с ) - в теории вероятностей и статистике наиболее распространённый показатель рассеивания значений случайной величины относительно её математического ожидания . При ограниченных массивах выборок значений вместо математического ожидания используется среднее арифметическое совокупности выборок.

Энциклопедичный YouTube

  • 1 / 5

    Среднеквадратическое отклонение измеряется в единицах измерения самой случайной величины и используется при расчёте стандартной ошибки среднего арифметического , при построении доверительных интервалов , при статистической проверке гипотез , при измерении линейной взаимосвязи между случайными величинами. Определяется как квадратный корень из дисперсии случайной величины .

    Среднеквадратическое отклонение:

    s = n n − 1 σ 2 = 1 n − 1 ∑ i = 1 n (x i − x ¯) 2 ; {\displaystyle s={\sqrt {{\frac {n}{n-1}}\sigma ^{2}}}={\sqrt {{\frac {1}{n-1}}\sum _{i=1}^{n}\left(x_{i}-{\bar {x}}\right)^{2}}};}
    • Примечание: Очень часто встречаются разночтения в названиях СКО (Среднеквадратического отклонения) и СТО (Стандартного отклонения) с их формулами. Например, в модуле numPy языка программирования Python функция std() описывается как "standart deviation", в то время как формула отражает СКО (деление на корень из выборки). В Excel же функция СТАНДОТКЛОН() другая (деление на корень из n-1).

    Стандартное отклонение (оценка среднеквадратического отклонения случайной величины x относительно её математического ожидания на основе несмещённой оценки её дисперсии) s {\displaystyle s} :

    σ = 1 n ∑ i = 1 n (x i − x ¯) 2 . {\displaystyle \sigma ={\sqrt {{\frac {1}{n}}\sum _{i=1}^{n}\left(x_{i}-{\bar {x}}\right)^{2}}}.}

    где σ 2 {\displaystyle \sigma ^{2}} - дисперсия ; x i {\displaystyle x_{i}} - i -й элемент выборки; n {\displaystyle n} - объём выборки; - среднее арифметическое выборки:

    x ¯ = 1 n ∑ i = 1 n x i = 1 n (x 1 + … + x n) . {\displaystyle {\bar {x}}={\frac {1}{n}}\sum _{i=1}^{n}x_{i}={\frac {1}{n}}(x_{1}+\ldots +x_{n}).}

    Следует отметить, что обе оценки являются смещёнными. В общем случае несмещённую оценку построить невозможно. Однако оценка на основе оценки несмещённой дисперсии является состоятельной .

    В соответствии с ГОСТ Р 8.736-2011 среднеквадратическое отклонение считается по второй формуле данного раздела. Пожалуйста, сверьте результаты.

    Правило трёх сигм

    Правило трёх сигм ( 3 σ {\displaystyle 3\sigma } ) - практически все значения нормально распределённой случайной величины лежат в интервале (x ¯ − 3 σ ; x ¯ + 3 σ) {\displaystyle \left({\bar {x}}-3\sigma ;{\bar {x}}+3\sigma \right)} . Более строго - приблизительно с вероятностью 0,9973 значение нормально распределённой случайной величины лежит в указанном интервале (при условии, что величина x ¯ {\displaystyle {\bar {x}}} истинная, а не полученная в результате обработки выборки).

    Если же истинная величина x ¯ {\displaystyle {\bar {x}}} неизвестна, то следует пользоваться не σ {\displaystyle \sigma } , а s . Таким образом, правило трёх сигм преобразуется в правило трёх s .

    Интерпретация величины среднеквадратического отклонения

    Большее значение среднеквадратического отклонения показывает больший разброс значений в представленном множестве со средней величиной множества; меньшее значение, соответственно, показывает, что значения в множестве сгруппированы вокруг среднего значения.

    Например, у нас есть три числовых множества: {0, 0, 14, 14}, {0, 6, 8, 14} и {6, 6, 8, 8}. У всех трёх множеств средние значения равны 7, а среднеквадратические отклонения, соответственно, равны 7, 5 и 1. У последнего множества среднеквадратическое отклонение маленькое, так как значения в множестве сгруппированы вокруг среднего значения; у первого множества самое большое значение среднеквадратического отклонения - значения внутри множества сильно расходятся со средним значением.

    В общем смысле среднеквадратическое отклонение можно считать мерой неопределённости. К примеру, в физике среднеквадратическое отклонение используется для определения погрешности серии последовательных измерений какой-либо величины. Это значение очень важно для определения правдоподобности изучаемого явления в сравнении с предсказанным теорией значением: если среднее значение измерений сильно отличается от предсказанных теорией значений (большое значение среднеквадратического отклонения), то полученные значения или метод их получения следует перепроверить. отождествляется с риском портфеля.

    Климат

    Предположим, существуют два города с одинаковой средней максимальной дневной температурой, но один расположен на побережье, а другой на равнине. Известно, что в городах, расположенных на побережье, множество различных максимальных дневных температур меньше, чем у городов, расположенных внутри континента. Поэтому среднеквадратическое отклонение максимальных дневных температур у прибрежного города будет меньше, чем у второго города, несмотря на то, что среднее значение этой величины у них одинаковое, что на практике означает, что вероятность того, что максимальная температура воздуха каждого конкретного дня в году будет сильнее отличаться от среднего значения, выше у города, расположенного внутри континента.

    Спорт

    Предположим, что есть несколько футбольных команд, которые оцениваются по некоторому набору параметров, например, количеству забитых и пропущенных голов, голевых моментов и т. п. Наиболее вероятно, что лучшая в этой группе команда будет иметь лучшие значения по большему количеству параметров. Чем меньше у команды среднеквадратическое отклонение по каждому из представленных параметров, тем предсказуемее является результат команды, такие команды являются сбалансированными. С другой стороны, у команды с большим значением среднеквадратического отклонения сложно предсказать результат, что в свою очередь объясняется дисбалансом, например, сильной защитой, но слабым нападением.

    Использование среднеквадратического отклонения параметров команды позволяет в той или иной мере предсказать результат матча двух команд, оценивая сильные и слабые стороны команд, а значит, и выбираемых способов борьбы.

    Полученные из опыта величины неизбежно содержат погрешности, обусловленные самыми разнообразными причинами. Среди них следует различать погрешности систематические и случайные. Систематические ошибки обусловливаются причинами, действующими вполне определенным образом, и могут быть всегда устранены или достаточно точно учтены. Случайные ошибки вызываются весьма большим числом отдельных причин, не поддающихся точному учету и действующих в каждом отдельном измерении различным образом. Эти ошибки невозможно совершенно исключить; учесть же их можно только в среднем, для чего необходимо знать законы, которым подчиняются случайные ошибки.

    Будем обозначать измеряемую величину через А, а случайную ошибку при измерении х. Так как ошибка х может принимать любые значения, то она является непрерывной случайной величиной, которая вполне характеризуется своим законом распределения.

    Наиболее простым и достаточно точно отображающим действительность (в подавляющем большинстве случаев) является так называемый нормальный закон распределения ошибок :

    Этот закон распределения может быть получен из различных теоретических предпосылок, в частности, из требования, чтобы наиболее вероятным значением неизвестной величины, для которой непосредственным измерением получен ряд значений с одинаковой степенью точности, являлось среднее арифметическое этих значений. Величина 2 называется дисперсией данного нормального закона.

    Среднее арифметическое

    Определение дисперсии по опытным данным. Если для какой-либо величины А непосредственным измерением получено n значений a i с одинаковой степенью точности и если ошибки величины А подчинены нормальному закону распределения, то наиболее вероятным значением А будет среднее арифметическое :

    a - среднее арифметическое,

    a i - измеренное значение на i-м шаге.

    Отклонение наблюдаемого значения (для каждого наблюдения) a i величины А от среднего арифметического : a i - a.

    Для определения дисперсии нормального закона распределения ошибок в этом случае пользуются формулой:

    2 - дисперсия,
    a - среднее арифметическое,
    n - число измерений параметра,

    Среднеквадратическое отклонение

    Среднеквадратическое отклонение показывает абсолютное отклонение измеренных значений от среднеарифметического . В соответствии с формулой для меры точности линейной комбинации средняя квадратическая ошибка среднего арифметического определяется по формуле:

    , где


    a - среднее арифметическое,
    n - число измерений параметра,
    a i - измеренное значение на i-м шаге.

    Коэффициент вариации

    Коэффициент вариации характеризует относительную меру отклонения измеренных значений от среднеарифметического :

    , где

    V - коэффициент вариации,
    - среднеквадратическое отклонение,
    a - среднее арифметическое.

    Чем больше значение коэффициента вариации , тем относительно больший разброс и меньшая выравненность исследуемых значений. Если коэффициент вариации меньше 10%, то изменчивость вариационного ряда принято считать незначительной, от 10% до 20% относится к средней, больше 20% и меньше 33% к значительной и если коэффициент вариации превышает 33%, то это говорит о неоднородности информации и необходимости исключения самых больших и самых маленьких значений.

    Среднее линейное отклонение

    Один из показателей размаха и интенсивности вариации - среднее линейное отклонение (средний модуль отклонения) от среднего арифметического. Среднее линейное отклонение рассчитывается по формуле:

    , где

    _
    a - среднее линейное отклонение,
    a - среднее арифметическое,
    n - число измерений параметра,
    a i - измеренное значение на i-м шаге.

    Для проверки соответствия исследуемых значений закону нормального распределения применяют отношение показателя асимметрии к его ошибке и отношение показателя эксцесса к его ошибке.

    Показатель асимметрии

    Показатель асимметрии (A) и его ошибка (m a) рассчитывается по следующим формулам:

    , где

    А - показатель асимметрии,
    - среднеквадратическое отклонение,
    a - среднее арифметическое,
    n - число измерений параметра,
    a i - измеренное значение на i-м шаге.

    Показатель эксцесса

    Показатель эксцесса (E) и его ошибка (m e) рассчитывается по следующим формулам:

    , где

    • Ответы на экзаменационные вопросы по общественному здоровью и здравоохранению.
    • 1. Общественное здоровье и здравоохранение как наука и область практической деятельности. Основные задачи. Объект, предмет изучения. Методы.
    • 2. Здравоохранение. Определение. История развития здравоохранения. Современные системы здравоохранения, их характеристика.
    • 3. Государственная политика в области охраны здоровья населения (Закон Республики Беларусь "о здравоохранении"). Организационные принципы государственной системы здравоохранения.
    • 4. Страховая и частная формы здравоохранения.
    • 5. Профилактика, определение, принципы, современные проблемы. Виды, уровни, направления профилактики.
    • 6. Национальные программы профилактики. Роль их в укреплении здоровья населения.
    • 7. Врачебная этика и деонтология. Определение понятия. Современные проблемы врачебной этики и деонтологии, характеристика.
    • 8. Здоровый образ жизни, определение понятия. Социальные и медицинские аспекты здорового образа жизни (зож).
    • 9. Гигиеническое обучение и воспитание, определение, основные принципы. Методы и средства гигиенического обучения и воспитания. Требования к лекции, санитарному бюллетеню.
    • 10. Здоровье населения, факторы, влияющие на здоровье населения. Формула здоровья. Показатели, характеризующие общественное здоровье. Схема анализа.
    • 11. Демография как наука, определение, содержание. Значение демографических данных для здравоохранения.
    • 12. Статика населения, методика изучения. Переписи населения. Типы возрастных структур населения.
    • 13. Механическое движение населения. Характеристика миграционных процессов, влияние их на показатели здоровья населения.
    • 14. Рождаемость как медико-социальная проблема. Методика вычисления показателей. Уровни рождаемости по данным воз. Современные тенденции.
    • 15. Специальные показатели рождаемости (показатели фертильности). Воспроизводство населения, типы воспроизводства. Показатели, методика вычисления.
    • 16. Смертность населения как медико-социальная проблема. Методика изучения, показатели. Уровни общей смертности по данным воз. Современные тенденции.
    • 17. Младенческая смертность как медико-социальная проблема. Факторы, определяющие ее уровень.
    • 18. Материнская и перинатальная смертность, основные причины. Показатели, методика вычисления.
    • 19. Естественное движение населения, факторы на него влияющие. Показатели, методика вычисления. Основные закономерности естественного движения в Беларуси.
    • 20. Планирование семьи. Определение. Современные проблемы. Медицинские организации и службы планирования семьи в рб.
    • 21. Заболеваемость как медико-социальная проблема. Современные тенденции и особенности в Республике Беларусь.
    • 22. Медико-социальные аспекты нервно-психического здоровья населения. Организация психоневрологической помощи
    • 23. Алкоголизм и наркомания как медико-социальная проблема
    • 24. Болезни системы кровообращения как медико-социальная проблема. Факторы риска. Направления профилактики. Организация кардиологической помощи.
    • 25. Злокачественные новообразования как медико-социальная проблема. Основные направления профилактики. Организация онкологической помощи.
    • 26. Международная статистическая классификация болезней. Принципы построения, порядок пользования. Значение ее в изучении заболеваемости и смертности населения.
    • 27. Методы изучения заболеваемости населения, их сравнительная характеристика.
    • Методика изучения общей и первичной заболеваемости
    • Показатели общей и первичной заболеваемости.
    • Показатели инфекционной заболеваемости.
    • Основные показатели, характеризующие важнейшую неэпидемическую заболеваемость.
    • Основные показатели "госпитализированной" заболеваемости:
    • 4) Заболевания с временной утратой трудоспособности (вопрос 30)
    • Основные показатели для анализа заболеваемости с вут.
    • 31. Изучение заболеваемости по данным профилактических осмотров населения, виды профилактических осмотров, порядок проведения. Группы здоровья. Понятие «патологическая пораженность».
    • 32. Заболеваемость по данным о причинах смерти. Методика изучения, показатели. Врачебное свидетельство о смерти.
    • Основные показатели заболеваемости по данным о причинах смерти:
    • 33. Инвалидность как медико-социальная проблема Определение понятия, показатели. Тенденции инвалидности в Республике Беларусь.
    • Тенденции инвалидности в рб.
    • 34. Первичная медико-санитарная помощь (пмсп), определение, содержание, роль и место в системе медицинского обслуживания населения. Основные функции.
    • 35. Основные принципы первичной медико-санитарной помощи. Медицинские организации первичной медико-санитарной помощи.
    • 36. Организация медицинской помощи, предоставляемой населению амбулаторно. Основные принципы. Учреждения.
    • 37. Организация медицинской помощи в условиях стационара. Учреждения. Показатели обеспеченности стационарной помощью.
    • 38. Виды медицинской помощи. Организация специализированной медицинской помощи населению. Центры специализированной медицинской помощи, их задачи.
    • 39. Основные направления совершенствования стационарной и специализированной помощи в Республике Беларусь.
    • 40. Охрана здоровья женщин и детей в Республике Беларусь. Управление. Медицинские организации.
    • 41. Современные проблемы охраны здоровья женщин. Организация акушерско-гинекологической помощи в Республике Беларусь.
    • 42. Организация лечебно-профилактической помощи детскому населению. Ведущие проблемы охраны здоровья детей.
    • 43. Организация охраны здоровья сельского населения, основные принципы оказания медицинской помощи сельским жителям. Этапы. Организации.
    • II этап – территориальное медицинское объединение (тмо).
    • III этап – областная больница и медицинские учреждения области.
    • 45. Медико-социальная экспертиза (мсэ), определение, содержание, основные понятия.
    • 46. Реабилитация, определение, виды. Закон Республики Беларусь «о предупреждении инвалидности и реабилитации инвалидов».
    • 47. Медицинская реабилитация: определение понятия, этапы, принципы. Служба медицинской реабилитации в Республике Беларусь.
    • 48. Городская поликлиника, структура, задачи, управление. Основные показатели деятельности поликлиники.
    • Основные показатели деятельности поликлиники.
    • 49. Участковый принцип организации амбулаторной помощи населению. Виды участков. Территориальный терапевтический участок. Нормативы. Содержание работы участкового врача-терапевта.
    • Организация работы участкового терапевта.
    • 50. Кабинет инфекционных заболеваний поликлиники. Разделы и методы работы врача кабинета инфекционных заболеваний.
    • 52. Основные показатели, характеризующие качество и эффективность диспансерного наблюдения. Методика их вычисления.
    • 53. Отделение медицинской реабилитации (омр) поликлиники. Структура, задачи. Порядок направления больных в омр.
    • 54. Детская поликлиника, структура, задачи, разделы работы. Особенности оказания медицинской помощи детям в амбулаторных условиях.
    • 55. Основные разделы работы участкового педиатра. Содержание лечебно-профилактической работы. Связь в работе с другими лечебно-профилактическими учреждениями. Документация.
    • 56. Содержание профилактической работы участкового врача-педиатра. Организация патронажного наблюдения за новорожденными.
    • 57. Структура, организация, содержание работы женской консультации. Показатели работы по обслуживанию беременных женщин. Документация.
    • 58. Родильный дом, структура, организация работы, управление. Показатели деятельности родильного дома. Документация.
    • 59. Городская больница, ее задачи, структура, основные показатели деятельности. Документация.
    • 60. Организация работы приемного отделения больницы. Документация. Мероприятия по профилактике внутрибольничных инфекций. Лечебно-охранительный режим.
    • Раздел 1. Сведения о подразделениях, установках лечебно-профилактической организации.
    • Раздел 2. Штаты лечебно-профилактической организации на конец отчетного года.
    • Раздел 3. Работа врачей поликлиники (амбулаторий), диспансера, консультации.
    • Раздел 4. Профилактические медицинские осмотры и работа стоматологических (зубоврачебных) и хирургических кабинетов лечебно-профилактической организации.
    • Раздел 5. Работа лечебно-вспомогательных отделений (кабинетов).
    • Раздел 6. Работа диагностических отделений.
    • 62. Годовой отчет о деятельности стационара (ф. 14), порядок составления, структура. Основные показатели деятельности стационара.
    • Раздел 1. Состав больных в стационаре и исходы их лечения
    • Раздел 2. Состав больных новорожденных, переведенных в другие стационары в возрасте 0-6 суток и исходы их лечения
    • Раздел 3. Коечный фонд и его использование
    • Раздел 4. Хирургическая работа стационара
    • 63. Отчет о медицинской помощи беременным, роженицам и родильницам (ф. 32), структура. Основные показатели.
    • Раздел I. Деятельность женской консультации.
    • Раздел II. Родовспоможение в стационаре
    • Раздел III. Материнская смертность
    • Раздел IV. Сведения о родившихся
    • 64. Медико-генетическое консультирование, основные учреждения. Его роль в профилактике перинатальной и младенческой смертности.
    • 65. Медицинская статистика, ее разделы, задачи. Роль статистического метода в изучении здоровья населения и деятельности системы здравоохранения.
    • 66. Статистическая совокупность. Определение, виды, свойства. Особенности проведения статистического исследования на выборочной совокупности.
    • 67. Выборочная совокупность, требования, предъявляемые к ней. Принцип и способы формирования выборочной совокупности.
    • 68. Единица наблюдения. Определение, характеристика учетных признаков.
    • 69. Организация статистического исследования. Характеристика этапов.
    • 70. Содержание плана и программы статистического исследования. Виды планов статистического исследования. Программа наблюдения.
    • 71. Статистическое наблюдение. Сплошное и несплошное статистическое исследование. Виды несплошного статистического исследования.
    • 72. Статистическое наблюдение (сбор материалов). Ошибки статистического наблюдения.
    • 73. Статистическая группировка и сводка. Типологическая и вариационная группировка.
    • 74. Статистические таблицы, виды, требования к построению.

    81. Среднее квадратическое отклонение, методика расчета, применение.

    Приближенный метод оценки колеблемости вариационного ряда - определение лимита и амплитуды, однако не учитывают значений вариант внутри ряда. Основной общепринятой мерой колеблемости количественного приз­нака в пределах вариационного ряда является среднее квадратичес­кое отклонение (σ - сигма) . Чем больше среднее квадратическое отклонение, тем степень ко­леблемости данного ряда выше.

    Методика расчета среднего квадратического отклонения включает следующие этапы:

    1. Находят среднюю арифметическую величину (Μ).

    2. Определяют отклонения отдельных вариант от средней арифмети­ческой (d=V-M). В медицинской статистике отклонения от средней обозначаются как d (deviate). Сумма всех от­клонений равняется нулю.

    3. Возводят каждое отклонение в квадрат d 2 .

    4. Перемножают квадраты отклонений на соответствующие частоты d 2 *p.

    5. Находят сумму произведений (d 2 *p)

    6. Вычисляют среднее квадратическое отклонение по формуле:

    при n больше 30, или
    при n меньше либо равно 30, где n - число всех вариант.

    Значение среднего квадратичного отклонения:

    1. Среднее квадратическое отклонение характеризует разброс вариант относительно средней величины (т.е. колеблемость вариационного ряда). Чем больше сигма, тем степень разнообразия данного ряда выше.

    2. Среднее квадратичное отклонение используется для сравнительной оценки степени соответствия средней арифметической величины тому вариационному ряду, для которого она вычислена.

    Вариации массовых явлений подчиняются закону нормального распределения. Кривая, отображающая это распределение, имеет вид плавной колоколообразной симметричной кривой (кривая Гаусса). Согласно теории вероятности в явлениях, подчиняющихся закону нормального распределения, между значениями средней арифметической и среднего квадратического отклонения существует строгая математическая зависимость. Теоретическое распределение вариант в однородном вариационном ряду подчиняется правилу трех сигм.

    Если в системе прямоугольных координат на оси абсцисс отложить значения количественного признака (варианты), а на оси ординат - частоты встречаемости вариант в вариационном ряду, то по сторонам от средней арифметической равномерно располагаются варианты с большими и меньшими значениями.

    Установлено, что при нормальном распределении признака:

    68,3% значений вариант находится в пределах М1

    95,5% значений вариант находится в пределах М2

    99,7% значений вариант находится в пределах М3

    3. Среднее квадратическое отлонение позволяет установить значения нормы для клинико-биологических показателей. В медицине интервал М1 обычно принимается за пределы нормы для изучаемого явления. Отклонение оцениваемой величины от средней арифметической больше, чем на 1 указывает на отклонение изучаемого параметра от нормы.

    4. В медицине правило трех сигм применяется в педиатрии для индивидуальной оценки уровня физического развития детей (метод сигмальных отклонений), для разработки стандартов детской одежды

    5. Среднее квадратическое отклонение необходимо для характеристики степени разнообразия изучаемого признака и вычисления ошибки средней арифметической величины.

    Величина среднего квадра­тического отклонения обычно используется для сравнения колеблемости однотипных рядов. Если сравниваются два ряда с разными признаками (рост и масса тела, средняя длительность лечения в стационаре и больничная летальность и т.д.), то непосредственное сопоставление размеров сигм невозможно, т.к. среднеквадратичес­кое отклонение - именованная величина, выраженная в абсолютных числах. В этих случаях применяют коэффициент вариации (Cv ) , представляющий собой относительную величину: процентное отноше­ние среднего квадратического отклонения к средней арифметической.

    Коэффициент вариации вычисляется по формуле:

    Чем выше коэффициент вариации, тем большая изменчивость данно­го ряда. Считают, что коэффициент вариации свыше 30 % свиде­тельствует о качественной неоднородности совокупности.

    Определяется как обобщающая характеристика размеров вариации признака в совокупности. Оно равно квадратному корню из среднего квадрата отклонений отдельных значений признака от средней арифметической, т.е. корень из и может быть найдена так:

    1. Для первичного ряда:

    2. Для вариационного ряда:

    Преобразование формулы среднего квадратичного отклонени приводит ее к виду, более удобному для практических расчетов:

    Среднее квадратичное отклонение определяет на сколько в среднем отклоняются конкретные варианты от их среднего значения, и к тому же является абсолютной мерой колеблемости признака и выражается в тех же единицах, что и варианты, и поэтому хорошо интерпретируется.

    Примеры нахождения cреднего квадратического отклонения: ,

    Для альтернативных признаков формула среднего квадратичного отклонения выглядит так:

    где р - доля единиц в совокупности, обладающих определенным признаком;

    q - доля единиц, не обладающих этим признаком.

    Понятие среднего линейного отклонения

    Среднее линейное отклонение определяется как средняя арифметическая абсолютных значений отклонений отдельных вариантов от .

    1. Для первичного ряда:

    2. Для вариационного ряда:

    где сумма n - сумма частот вариационного ряда .

    Пример нахождения cреднего линейного отклонения:

    Преимущество среднего абсолютного отклонения как меры рассеивания перед размахом вариации, очевидно, так как эта мера основана на учете всех возможных отклонений. Но этот показатель имеет существенные недостатки. Произвольные отбрасывания алгебраических знаков отклонений могут привести к тому, что математические свойства этого показателя являются далеко не элементарными. Это сильно затрудняет использование среднего абсолютного отклонения при решении задач, связанных с вероятностными расчетами.

    Поэтому среднее линейное отклонение как мера вариации признака применяется в статистической практике редко, а именно тогда, когда суммирование показателей без учета знаков имеет экономический смысл. С его помощью, например, анализируется оборот внешней торговли, состав работающих, ритмичность производства и т. д.

    Среднее квадратическое

    Среднее квадратическое применяется , например, для вычисления средней величины сторон n квадратных участков, средних диаметров стволов, труб и т. д. Она подразделяется на два вида.

    Средняя квадратичная простая. Если при замене индивидуальных величин признака на среднюю величину необходимо сохранить неизменной сумму квадратов исходных величин, то средняя будет являться квадратичной средней величиной.

    Она является квадратным корнем из частного от деления суммы квадратов отдельных значений признака на их число:

    Средняя квадратичная взвешенная вычисляется по формуле:

    где f - признак веса.

    Средняя кубическая

    Средняя кубическая применяется , например, при определении средней длины стороны и кубов. Она подразделяется на два вида.
    Средняя кубическая простая:

    При расчете средних величин и дисперсии в интервальных рядах распределения истинные значения признака заменяются центральными значениями интервалов, которые отличны от средней арифметической значений, включенных в интервал. Это приводит к возникновению систематической погрешности при расчете дисперсии. В.Ф. Шеппард определил, что погрешность в расчете дисперсии , вызванная применением сгруппированных данных, составляет 1/12 квадрата величины интервала как в сторону повышения, так и в сторону понижения величины дисперсии.

    Поправка Шеппарда должна применяться, если распределение близко к нормальному, относится к признаку с непрерывным характером вариации, построено по значительному количеству исходных данных (n > 500). Однако исходя из того, что в ряде случаев обе погрешности, действуя в разных направлениях компенсируют друг друга, можно иногда отказаться от введения поправок.

    Чем меньше значение дисперсии и среднего квадратического отклонения, тем однороднее совокупность и тем более типичной будет средняя величина.
    В практике статистики часто возникает необходимость сравнения вариаций различных признаков. Например, большой интерес представляет сравнение вариаций возраста рабочих и их квалификации, стажа работы и размера заработной платы, себестоимости и прибыли, стажа работы и производительности труда и т.д. Для таких сопоставлений показатели абсолютной колеблемости признаков непригодны: нельзя сравнивать колеблемость стажа работы, выраженного в годах, с вариацией заработной платы, выраженной в рублях.

    Для осуществления таких сравнений, а также сравнений колеблемости одного и того же признака в нескольких совокупностях с разными средним арифметическим используется относительный показатель вариации - коэффициент вариации.

    Структурные средние

    Для характеристики центральной тенденции в статистических распределениях не редко рационально вместе со средней арифметической использовать некоторое значение признака X, которое в силу определенных особенностей расположения в ряду распределения может характеризовать его уровень.

    Это особенно важно тогда, когда в ряду распределения крайние значения признака имеют нечеткие границы. В связи с этим точное определение средней арифметической, как правило, невозможно, либо очень сложно. В таких случаях средний уровень можно определить, взяв, например, значение признака, которое расположено в середине ряда частот или которое чаще всего встречается в текущем ряду.

    Такие значения зависят только от характера частот т. е. от структуры распределения. Они типичны по месту расположения в ряду частот, поэтому такие значения рассматриваются в качестве характеристик центра распределения и поэтому получили определение структурных средних. Они применяются для изучения внутреннего строения и структуры рядов распределения значений признака. К таким показателям относятся .

    Стандартное отклонение является одним из тех статистических терминов в корпоративном мире, которое позволяет поднять авторитет людей, сумевших удачно ввернуть его в ходе беседы или презентации, и оставляет смутное недопонимание тех, кто не знает, что это такое, но стесняется спросить. На самом деле большинство менеджеров не понимают концепцию стандартного отклонения и, если вы один из них, вам пора перестать жить во лжи. В сегодняшней статье я расскажу вам, как эта недооцененная статистическая мера позволит лучше понять данные, с которыми вы работаете.

    Что измеряет стандартное отклонение?

    Представьте, что вы владелец двух магазинов. И чтобы избежать потерь, важно, чтобы был четкий контроль остатков на складе. В попытке выяснить, кто из менеджеров лучше управляет запасами, вы решили проанализировать стоки последних шести недель. Средняя недельная стоимость стока обоих магазинов примерно одинакова и составляет около 32 условных единиц. На первый взгляд среднее значение стока показывает, что оба менеджера работают одинаково.

    Но если внимательнее изучить деятельность второго магазина, можно убедится, что хотя среднее значение корректно, вариабельность стока очень высокая (от 10 до 58 у.е.). Таким образом, можно сделать вывод, что среднее значение не всегда правильно оценивает данные. Вот где на выручку приходит стандартное отклонение.

    Стандартное отклонение показывает, как распределены значения относительно среднего в нашей . Другими словами, можно понять на сколько велик разброс величины стока от недели к неделе.

    В нашем примере, мы воспользовались функцией Excel СТАНДОТКЛОН, чтобы рассчитать показатель стандартного отклонения вместе со средним.

    В случае с первым менеджером, стандартное отклонение составило 2. Это говорит нам о том, что каждое значение в выборке в среднем откланяется на 2 от среднего значения. Хорошо ли это? Давайте рассмотрим вопрос под другим углом – стандартное отклонение равное 0, говорит нам о том, что каждое значение в выборке равно его среднему значению (в нашем случае, 32,2). Так, стандартное отклонение 2 ненамного отличается от 0, и указывает на то, что большинство значений находятся рядом со средним значением. Чем ближе стандартное отклонение к 0, тем надежнее среднее. Более того, стандартное отклонение близкое к 0, говорит о маленькой вариабельности данных. То есть, величина стока со стандартным отклонением 2, указывает на невероятную последовательность первого менеджера.

    В случае со вторым магазином, стандартное отклонение составило 18,9. То есть стоимость стока в среднем отклоняется на величину 18,9 от среднего значения от недели к неделе. Сумасшедший разброс! Чем дальше стандартное отклонение от 0, тем менее точно среднее значение. В нашем случае, цифра 18,9 указывает на то, что среднему значению (32,8 у.е. в неделю) просто нельзя доверять. Оно также говорит нам о том, что еженедельная величина стока обладает большой вариабельностью.

    Такова концепция стандартного отклонения в двух словах. Хотя оно не дает представление о других важных статистических измерениях (Мода, Медиана…), фактически стандартное отклонение играет решающую роль в большинстве статистических расчетов. Понимание принципов стандартного отклонения прольет свет на суть многих процессов вашей деятельности.

    Как рассчитать стандартное отклонение?

    Итак, теперь мы знаем, о чем говорит цифра стандартного отклонения. Давайте разберемся, как она считается.

    Рассмотрим набор данных от 10 до 70 с шагом 10. Как видите, я уже рассчитал для них значение стандартного отклонения с помощью функции СТАНДОТКЛОН в ячейке H2 (оранжевым).

    Ниже описаны шаги, которые предпринимает Excel, чтобы прийти к цифре 21,6.

    Обратите внимание, что все расчеты визуализированы, для лучшего понимания. На самом деле в Excel расчет происходит мгновенно, оставляя все шаги за кулисами.

    Для начала Excel находит среднее значение выборки. В нашем случае, среднее получилось равным 40, которое на следующем шаге отнимают от каждого значения выборки. Каждую полученную разницу возводят в квадрат и суммируют. У нас получилась сумма равная 2800, которую необходимо разделить на количество элементов выборки минус 1. Так как у нас 7 элементов, получается необходимо 2800 разделить на 6. Из полученного результата находим квадратный корень, это цифра будет стандартным отклонением.

    Для тех, кому не совсем ясен принцип расчета стандартного отклонения с помощью визуализации, привожу математическую интерпретацию нахождения данного значения.

    Функции расчета стандартного отклонения в Excel

    В Excel присутствует несколько разновидностей формул стандартного отклонения. Вам достаточно набрать =СТАНДОТКЛОН и вы сами в этом убедитесь.

    Стоит отметить, что функции СТАНДОТКЛОН.В и СТАНДОТКЛОН.Г (первая и вторая функция в списке) дублируют функции СТАНДОТКЛОН и СТАНДОТКЛОНП (пятая и шестая функция в списке), соответственно, которые были оставлены для совместимости с более ранними версиями Excel.

    Вообще разница в окончаниях.В и.Г функций указывают на принцип расчета стандартного отклонения выборки или генеральной совокупности. Разницу между двумя этими массивами я уже объяснял в предыдущей .

    Особенностью функций СТАНДОТКЛОНА и СТАНДОТКЛОНПА (третья и четвертая функция в списке), является то, что при расчете стандартного отклонения массива в расчет принимаются логические и текстовые значения. Текстовые и истинные логические значения равняются 1, а ложные логические значения равняются 0. Мне трудно представить ситуацию, когда бы мне могли понадобится эти две функции, поэтому, думаю, что их можно игнорировать.