Водород - это что такое? Свойства и значение. Химические свойства водорода: особенности и применение

Водород является самым первым элементом в Периодической системе химических элементов, имеет атомный номер 1 и относительную атомную массу 1,0079. Каковы физические свойства водорода?

Физические свойства водорода

В переводе с латыни водород означает «рождающий воду». Еще в 1766 году английский ученый Г. Кавендиш собрал выделяющийся при действии кислот на металлы «горючий воздух» и стал исследовать его свойства. В 1787 году А. Лавуазье определил этот «горючий воздух» как новый химический элемент, который входит в состав воды.

Рис. 1. А. Лавуазье.

У водорода существуют 2 стабильных изотопа – протий и дейтерий, а также радиоактивный – тритий, количество которого на нашей планете очень мало.

Водород является самым распространенным элементом в космосе. Солнце и большинство звезд имеют водород в своем составе в качестве основного элемента. Также этот газ входит в состав воды, нефти, природного газа. Общее содержание водорода на Земле составляет 1%.

Рис. 2. Формула водорода.

В состав атома этого вещества входит ядро и один электрон. Когда у водорода теряется электрон, он образует положительно заряженный ион, то есть проявляет металлические свойства. Но также атом водорода способен не только терять, но и присоединять электрон. В этом он очень похож на галогены. Поэтому водород в Периодической системе относится и к I и к VII группе. Неметаллические свойства водорода выражены у него в большей степени.

Молекула водорода состоит из двух атомов, связанных между собой ковалентной связью

Водород при обычных условиях является бесцветным газообразным элементом, который не имеет запаха и вкуса. Он в 14 раз легче воздуха, а его температура кипения составляет -252,8 градусов по Цельсию.

Таблица «Физические свойства водорода»

Кроме физических свойств водород обладает и рядом химических свойств. водород при нагревании или под действием катализаторов вступает в реакции с металлами и неметаллами, серой, селеном, теллуром, а также может восстанавливать оксиды многих металлов.

Получение водорода

Из промышленных способов получения водорода (кроме электролиза водных растворов солей) следует отметить следующие:

  • пропускание паров воды через раскаленный уголь при температуре 1000 градусов:
  • конверсия метана водяным паром при температуре 900 градусов:

CH 4 +2H 2 O=CO 2 +4H 2

Рис. 3. Паровая конверсия метана.

  • разложение метана в присутствии катализатора (Ni) при температуре 400 градусов:

ОПРЕДЕЛЕНИЕ

Водород - первый элемент Периодической таблицы. Обозначение - H от латинского «hydrogenium». Расположен в первом периоде, IА группе. Относится к неметаллам. Заряд ядра равен 1.

Водород является одним из наиболее распространенных химических элементов - его доля составляет около 1% от массы всех трех оболочек земной коры (атмосферы, гидросферы и литосферы), что при пересчете на атомные проценты дает цифру 17,0.

Основное количество этого элемента находится в связанном состоянии. Так, вода содержит около 11 вес. %, глина - около 1,5% и т.д. В виде соединений с углеродом водород входит в состав нефти, горючих природных газов и всех организмов.

Водород представляет собой газ без цвета и запаха (схема строения атома представлена на рис. 1). Его температуры плавления и кипения лежат весьма низко (-259 o С и -253 o С соответственно). При температуре (-240 o С) и под давлением водород способен сжижаться, а при быстром испарении полученной жидкости переходить в твердое состояние (прозрачные кристаллы). В воде он растворим незначительно - 2:100 по объему. Характерна для водорода растворимость в некоторых металлах, например, в железе.

Рис. 1. Строение атома водорода.

Атомная и молекулярная масса водорода

ОПРЕДЕЛЕНИЕ

Относительной атомной массой элемента называют отношение массы атома данного элемента к 1/12 массы атома углерода.

Относительная атомная масса безразмерна и обозначается A r (индекс «r» — начальная буква английского слова relative, что в переводе означает «относительный»). Относительная атомная масса атомарного водорода равна 1,008 а.е.м.

Массы молекул, также как массы атомов выражаются в атомных единицах массы.

ОПРЕДЕЛЕНИЕ

Молекулярной массой вещества называется масса молекулы, выраженная в атомных единицах массы. Относительной молекулярной массой вещества называют отношение массы молекулы данного вещества к 1/12 массы атома углерода, масса которого равна 12 а.е.м.

Известно, что молекула водорода двухатомна - H 2 . Относительная молекулярная масса молекулы водорода будет равна:

M r (H 2) = 1,008 × 2 = 2,016.

Изотопы водорода

Водород имеет три изотопа: протий 1 H, дейтерий 2 Н или D и тритий 3 Н или Т. Их массовые числа равны 1, 2 и 3. Протий и дейтерий стабильны, тритий - радиоактивен (период полураспада 12,5 лет). В природных соединениях дейтерий и протий в среднем содержатся в отношении 1:6800 (по числу атомов). Тритий находится в природе в ничтожно малых количествах.

Ядро атома водорода 1 H содержит один протон. Ядра дейтерия и трития включают кроме протона один и два нейтрона.

Ионы водорода

Атом водорода может либо отдавать свой единственный электрон с образованием положительного иона (представляющего собой «голый» протон), либо присоединять один электрон, переходя в отрицательный ион, имеющий гелийную электронную конфигурацию.

Полный отрыв электрона от атома водорода требует затраты очень большой энергии ионизации:

Н + 315 ккал = Н + + е.

Вследствие этого при взаимодействии водорода с металлоидаими возникают не ионные, а лишь полярные связи.

Тенденция того или иного нейтрального атома к присоединению избыточного электрона характеризуется значением его сродства к электрону. У водорода оно выражено довольно слабо (однако это не говорит о невозможности существования такого иона водорода):

Н + е = Н — + 19 ккал.

Молекула и атом водорода

Молекула водорода состоит из двух атомов - Н 2 . Приведем некоторые свойства, характеризующие атом и молекулу водорода:

Примеры решения задач

ПРИМЕР 1

Задание Докажите, что существуют гидриды общей формулы ЭН х, содержащие 12,5% водорода.
Решение Рассчитаем массы водорода и неизвестного элемента, приняв массу образца за 100 г:

m(H) = m (ЭН х) ×w (H);

m(H) = 100 × 0,125 = 12,5 г.

m(Э) = m (ЭН х) — m(H);

m(Э) = 100 - 12,5 = 87,5 г.

Найдем количество вещества водорода и неизвестного элемента, обозначив за «х» молярную массу последнего (молярная масса водорода равна 1 г/моль):

Жидкий

Водород (лат. Hydrogenium ; обозначается символом H ) — первый элемент периодической системы элементов. Широко распространён в природе. Катион (и ядро) самого распространённого изотопа водорода 1 H — протон. Свойства ядра 1 H позволяют широко использовать ЯМР-спектроскопию в анализе органических веществ.

Три изотопа водорода имеют собственные названия: 1 H — протий (Н), 2 H — дейтерий (D) и 3 H — тритий (радиоактивен) (T).

Простое вещество водород — H 2 — лёгкий бесцветный газ. В смеси с воздухом или кислородом горюч и взрывоопасен. Нетоксичен. Растворим в этаноле и рядеметаллов: железе, никеле, палладии, платине.

История

Выделение горючего газа при взаимодействии кислот и металлов наблюдали в XVI и XVII веках на заре становления химии как науки. Прямо указывал на выделение его и Михаил Васильевич Ломоносов, но уже определённо сознавая, что это не флогистон. Английский физик и химик Генри Кавендиш в 1766 году исследовал этот газ и назвал его «горючим воздухом». При сжигании «горючий воздух» давал воду, но приверженность Кавендиша теории флогистона помешала ему сделать правильные выводы. Французский химик Антуан Лавуазье совместно с инженером Ж. Менье, используя специальные газометры, в 1783 г. осуществил синтез воды, а затем и её анализ, разложив водяной пар раскалённым железом. Таким образом он установил, что «горючий воздух» входит в состав воды и может быть из неё получен.

Происхождение названия

Лавуазье дал водороду название hydrogène — «рождающий воду». Русское наименование «водород» предложил химик М. Ф. Соловьев в 1824 году — по аналогии сломоносовским «кислородом».

Распространённость

Водород — самый распространённый элемент во Вселенной. На его долю приходится около 92 % всех атомов (8 % составляют атомы гелия, доля всех остальных вместе взятых элементов — менее 0,1 %). Таким образом, водород — основная составная часть звёзд и межзвёздного газа. В условиях звёздных температур (например, температура поверхности Солнца ~ 6000 °C) водород существует в виде плазмы, в межзвёздном пространстве этот элемент существует в виде отдельных молекул, атомов и ионов и может образовывать молекулярные облака, значительно различающиеся по размерам, плотности и температуре.

Земная кора и живые организмы

Массовая доля водорода в земной коре составляет 1 % — это десятый по распространённости элемент. Однако его роль в природе определяется не массой, а числом атомов, доля которых среди остальных элементов составляет 17 % (второе место после кислорода, доля атомов которого равна ~ 52 %). Поэтому значение водорода в химических процессах, происходящих на Земле, почти так же велико, как и кислорода. В отличие от кислорода, существующего на Земле и в связанном, и в свободном состояниях, практически весь водород на Земле находится в виде соединений; лишь в очень незначительном количестве водород в виде простого вещества содержится в атмосфере (0,00005 % по объёму).

Водород входит в состав практически всех органических веществ и присутствует во всех живых клетках. В живых клетках по числу атомов на водород приходится почти 50 %.

Получение

Промышленные способы получения простых веществ зависят от того, в каком виде соответствующий элемент находится в природе, то есть что может быть сырьём для его получения. Так, кислород, имеющийся в свободном состоянии, получают физическим способом — выделением из жидкого воздуха. Водород же практически весь находится в виде соединений, поэтому для его получения применяют химические методы. В частности, могут быть использованы реакции разложения. Одним из способов получения водорода служит реакция разложения воды электрическим током.

Основной промышленный способ получения водорода — реакция с водой метана, который входит в состав природного газа. Она проводится при высокой температуре (легко убедиться, что при пропускании метана даже через кипящую воду никакой реакции не происходит):

СН 4 + 2Н 2 O = CO 2 + 4Н 2 −165 кДж

В лаборатории для получения простых веществ используют не обязательно природное сырьё, а выбирают те исходные вещества, из которых легче выделить необходимое вещество. Например, в лаборатории кислород не получают из воздуха. Это же относится и к получению водорода. Один из лабораторных способов получения водорода, который иногда применяется и в промышленности, — разложение воды электротоком.

Обычно в лаборатории водород получают взаимодействием цинка с соляной кислотой.

В промышленности

1.Электролиз водных растворов солей:

2NaCl + 2H 2 O → H 2 + 2NaOH + Cl 2

2.Пропускание паров воды над раскаленным коксом при температуре около 1000 °C:

H 2 O + C ? H 2 + CO

3.Из природного газа.

Конверсия с водяным паром:

CH 4 + H 2 O ? CO + 3H 2 (1000 °C)

Каталитическое окисление кислородом:

2CH 4 + O 2 ? 2CO + 4H 2

4. Крекинг и риформинг углеводородов в процессе переработки нефти.

В лаборатории

1.Действие разбавленных кислот на металлы. Для проведения такой реакции чаще всего используют цинк и разбавленную соляную кислоту:

Zn + 2HCl → ZnCl 2 + H 2

2.Взаимодействие кальция с водой:

Ca + 2H 2 O → Ca(OH) 2 + H 2

3.Гидролиз гидридов:

NaH + H 2 O → NaOH + H 2

4.Действие щелочей на цинк или алюминий:

2Al + 2NaOH + 6H 2 O → 2Na + 3H 2

Zn + 2KOH + 2H 2 O → K 2 + H 2

5.С помощью электролиза. При электролизе водных растворов щелочей или кислот на катоде происходит выделение водорода, например:

2H 3 O + + 2e − → H 2 + 2H 2 O

Физические свойства

Водород может существовать в двух формах (модификациях) — в виде орто- и пара- водорода. В молекуле ортоводорода o -H 2 (т. пл. −259,10 °C, т. кип. −252,56 °C) ядерные спины направлены одинаково (параллельны), а у параводорода p -H 2 (т. пл. −259,32 °C, т. кип. −252,89 °C) — противоположно друг другу (антипараллельны). Равновесная смесь o -H 2 и p -H 2 при заданной температуре называется равновесный водород e -H 2 .

Разделить модификации водорода можноадсорбциейна активном угле при температуре жидкого азота. При очень низких температурах равновесие между ортоводородом и параводородом почти нацело сдвинуто в сторону последнего. При 80 К соотношение форм приблизительно 1:1. Десорбированный параводород при нагревании превращается в ортоводород вплоть до образования равновесной при комнатной температуре смеси (орто-пара: 75:25). Без катализатора превращение происходит медленно (в условиях межзвездной среды - с характерными временами вплоть до космологических), что даёт возможность изучить свойства отдельных модификаций.

Водород — самый лёгкийгаз, он легче воздуха в 14,5 раз. Очевидно, что чем меньше масса молекул, тем выше их скорость при одной и той же температуре. Как самые лёгкие, молекулы водорода движутся быстрее молекул любого другого газа и тем самым быстрее могут передавать теплоту от одного тела к другому. Отсюда следует, что водород обладает самой высокой теплопроводностью среди газообразных веществ. Его теплопроводность примерно в семь раз выше теплопроводности воздуха.

Молекула водорода двухатомна — Н 2 . При нормальных условиях — это газ без цвета, запаха и вкуса. Плотность 0,08987 г/л (н.у.), температура кипения −252,76 °C, удельная теплота сгорания 120.9×10 6 Дж/кг, малорастворим в воде — 18,8 мл/л. Водород хорошо растворим во многих металлах (Ni,Pt,Pdи др.), особенно в палладии (850 объёмов на 1 объём Pd). С растворимостью водорода в металлах связана его способность диффундировать через них; диффузия через углеродистый сплав (например, сталь) иногда сопровождается разрушением сплава вследствие взаимодействия водорода с углеродом (так называемая декарбонизация). Практически не растворим всеребре.

Жидкий водород существует в очень узком интервале температур от −252,76 до −259,2 °C. Это бесцветная жидкость, очень лёгкая (плотность при −253 °C 0,0708 г/см 3) и текучая (вязкость при −253 °C 13,8 спуаз). Критические параметры водорода очень низкие: температура −240,2 °C и давление 12,8 атм. Этим объясняются трудности при ожижении водорода. В жидком состоянии равновесный водород состоит из 99,79 % пара-Н 2 , 0,21 % орто-Н 2 .

Твердый водород, температура плавления −259,2 °C, плотность 0,0807 г/см 3 (при −262 °C) — снегоподобная масса, кристаллы гексогональной сингонии,пространственная группа P6/mmc, параметры ячейки a =3,75 c =6,12. При высоком давлении водород переходит в металлическое состояние.

Изотопы

Водород встречается в виде трёх изотопов, которые имеют индивидуальные названия: 1 H — протий (Н), 2 Н — дейтерий (D), 3 Н — тритий (радиоактивный) (T).

Протий и дейтерий являются стабильными изотопами с массовыми числами 1 и 2. Содержание их в природе соответственно составляет 99,9885 ± 0,0070 % и 0,0115 ± 0,0070 %. Это соотношение может незначительно меняться в зависимости от источника и способа получения водорода.

Изотоп водорода 3 Н (тритий) нестабилен. Его период полураспада составляет 12,32 лет. Тритий содержится в природе в очень малых количествах.

В литературе также приводятся данные об изотопах водорода с массовыми числами 4 — 7 и периодами полураспада 10 −22 — 10 −23 с.

Природный водород состоит из молекул H 2 и HD (дейтероводород) в соотношении 3200:1. Содержание чистого дейтерийного водорода D 2 ещё меньше. Отношение концентраций HD и D 2 , примерно, 6400:1.

Из всех изотопов химических элементов физические и химические свойства изотопов водорода отличаются друг от друга наиболее сильно. Это связано с наибольшим относительным изменением масс атомов.

Температура
плавления,
K

Температура
кипения,
K

Тройная
точка,
K / kPa

Критическая
точка,
K / kPa

Плотность
жидкий / газ,
кг/м³

Дейтерий и тритий также имеют орто- и пара- модификации: p -D 2 , o -D 2 , p -T 2 , o -T 2 . Гетероизотопный водород (HD, HT, DT) не имеют орто- и пара- модификаций.

Химические свойства

Доля диссоциировавших молекул водорода

Молекулы водорода Н 2 довольно прочны, и для того, чтобы водород мог вступить в реакцию, должна быть затрачена большая энергия:

Н 2 = 2Н − 432 кДж

Поэтому при обычных температурах водород реагирует только с очень активными металлами, например с кальцием, образуя гидрид кальция:

Ca + Н 2 = СаН 2

и с единственным неметаллом — фтором, образуя фтороводород:

С большинством же металлов и неметаллов водород реагирует при повышенной температуре или при другом воздействии, например при освещении:

О 2 + 2Н 2 = 2Н 2 О

Он может «отнимать» кислород от некоторых оксидов, например:

CuO + Н 2 = Cu + Н 2 O

Записанное уравнение отражает восстановительные свойства водорода.

N 2 + 3H 2 → 2NH 3

С галогенами образует галогеноводороды:

F 2 + H 2 → 2HF, реакция протекает со взрывом в темноте и при любой температуре,

Cl 2 + H 2 → 2HCl, реакция протекает со взрывом, только на свету.

С сажей взаимодействует при сильном нагревании:

C + 2H 2 → CH 4

Взаимодействие со щелочными и щёлочноземельными металлами

При взаимодействии с активными металлами водород образует гидриды:

2Na + H 2 → 2NaH

Ca + H 2 → CaH 2

Mg + H 2 → MgH 2

Гидриды — солеобразные, твёрдые вещества, легко гидролизуются:

CaH 2 + 2H 2 O → Ca(OH) 2 + 2H 2

Взаимодействие с оксидами металлов (как правило, d-элементов)

Оксиды восстанавливаются до металлов:

CuO + H 2 → Cu + H 2 O

Fe 2 O 3 + 3H 2 → 2Fe + 3H 2 O

WO 3 + 3H 2 → W + 3H 2 O

Гидрирование органических соединений

Молекулярный водород широко применяется в органическом синтезе для восстановления органических соединений. Эти процессы называют реакциями гидрирования . Эти реакции проводят в присутствии катализатора при повышенных давлении и температуре. Катализатор может быть как гомогенным (напр.Катализатор Уилкинсона), так и гетерогенным (напр. никель Ренея, палладий на угле).

Так, в частности, при каталитическом гидрировании ненасыщенных соединений, таких как алкены и алкины, образуются насыщенные соединения — алканы.

Геохимия водорода

Свободный водород H 2 относительно редко встречается в земных газах, но в виде воды он принимает исключительно важное участие в геохимических процессах.

В состав минералов водород может входить в виде иона аммония, гидроксил-иона и кристаллической воды.

В атмосфере водород непрерывно образуется в результате разложения воды солнечным излучением. Имея малую массу, молекулы водорода обладают высокой скоростью диффузионного движения (она близка ко второй космической скорости) и, попадая в верхние слои атмосферы, могут улететь в космическое пространство.

Особенности обращения

Водород при смеси с воздухом образует взрывоопасную смесь — так называемый гремучий газ. Наибольшую взрывоопасность этот газ имеет при объёмном отношении водорода и кислорода 2:1, или водорода и воздуха приближённо 2:5, так как в воздухе кислорода содержится примерно 21 %. Также водородпожароопасен. Жидкий водород при попадании на кожу может вызвать сильное обморожение.

Взрывоопасные концентрации водорода с кислородом возникают от 4 % до 96 % объёмных. При смеси с воздухом от 4 % до 75(74) % объёмных.

Экономика

Стоимость водорода при крупнооптовых поставках колеблется в диапазоне 2-5$ за кг.

Применение

Атомарный водород используется для атомно-водородной сварки.

Химическая промышленность

  • При производстве аммиака, метанола, мыла и пластмасс
  • При производстве маргарина из жидких растительных масел
  • Зарегистрирован в качестве пищевой добавки E949 (упаковочный газ)

Пищевая промышленность

Авиационная промышленность

Водород очень лёгок и в воздухе всегда поднимается вверх. Когда-то дирижабли и воздушные шары наполняли водородом. Но в 30-х гг. XX в. произошло несколькокатастроф, в ходе которых дирижабли взрывались и сгорали. В наше время дирижабли наполняют гелием, несмотря на его существенно более высокую стоимость.

Топливо

Водород используют в качестве ракетного топлива.

Ведутся исследования по применению водорода как топлива для легковых и грузовых автомобилей. Водородные двигатели не загрязняют окружающей среды и выделяют только водяной пар.

В водородно-кислородных топливных элементах используется водород для непосредственного преобразования энергии химической реакции в электрическую.

«Жидкий водород» («ЖВ») — жидкое агрегатное состояние водорода, с низкой удельной плотностью 0.07 г/см³ и криогенными свойствами с точкой замерзания 14.01 K (−259.14 °C) и точкой кипения 20.28 K (−252.87 °C). Является бесцветной жидкостью без запаха, которая при смешивании с воздухом относится к взрывоопасным веществам с диапазоном коэффициента воспламенения 4-75 %. Спиновое соотношение изомеров в жидком водороде составляет: 99,79 % —параводород; 0,21 % — ортоводород. Коэффициент расширения водорода при смене агрегатного состояния на газообразное составляет 848:1 при 20°C.

Как и для любого другого газа, сжижение водорода приводит к уменьшению его объема. После сжижения «ЖВ» хранится в термически изолированных контейнерах под давлением. Жидкий водород (англ. Liquid hydrogen , LH2 , LH 2 ) активно используется в промышленности, в качестве формы хранения газа, и в космическойотрасли, в качестве ракетного топлива.

История

Первое документированное использование искусственного охлаждения в 1756 году было осуществлено английским ученым Вильямом Калленом, Гаспар Монж первым получил жидкое состояние оксида серы в 1784 году, Майкл Фарадей первым получил сжиженный аммиак, американский изобретатель Оливер Эванс первым разработал холодильный компрессор в 1805 году, Яков Перкинс первым запатентовал охлаждающую машину в 1834 году и Джон Гори первым в США запатентовалкондиционер в 1851 году. Вернер Сименс предложил концепцию регенеративного охлаждения в 1857 году, Карл Линде запатентовал оборудование для получения жидкого воздуха с использованием каскадного «эффекта расширения Джоуля — Томсона» и регенеративного охлаждения в 1876 году. В 1885 году польскийфизик и химик Зигмунд Вро?блевский опубликовал критическую температуру водорода 33 K, критическое давление 13.3 атм. и точку кипения при 23 K. Впервыеводород был сжижен Джеймсом Дьюаром в 1898 году с использованием регенеративного охлаждения и своего изобретения, cосуда Дьюара. Первый синтез стабильного изомера жидкого водорода — параводорода — был осуществлен Полом Хартеком и Карлом Бонхеффером в 1929 году.

Спиновые изомеры водорода

Водород при комнатной температуре состоит в основном из спинового изомера, ортоводорода. После производства, жидкий водород находится в метастабильном состоянии и должен быть преобразован в параводородную форму, для того чтобы избежать взрывоопасной экзотермической реакции, которая имеет место при его изменении при низких температурах. Преобразование в параводородную фазу обычно производится с использованием таких катализаторов, как оксид железа, оксид хрома, активированный уголь, покрытых платиной асбестов, редкоземельных металлов или путем использования урановых или никелевых добавок.

Использование

Жидкий водород может быть использован в качестве формы хранения топлива для двигателей внутреннего сгорания и топливных элементов. Различные подлодки(проекты «212А» и «214», Германия) и концепты водородного транспорта были созданы с использованием этой агрегатной формы водорода (см. например «DeepC»или «BMW H2R»). Благодаря близости конструкций, создатели техники на «ЖВ» могут использовать или только модифицировать системы, использующие сжиженный природный газ («СПГ»). Однако из-за более низкой объемной плотности энергии для горения требуется больший объем водорода, чем природного газа. Если жидкий водород используется вместо «СПГ» в поршневых двигателях, обычно требуется более громоздкая топливная система. При прямом впрыске увеличившиеся потери во впускном тракте уменьшают наполнение цилиндров.

Жидкий водород используется также для охлаждения нейтронов в экспериментах по нейтронному рассеянию. Массы нейтрона и ядра водорода практически равны, поэтому обмен энергией при упругом столкновении наиболее эффективен.

Преимущества

Преимуществом использования водорода является «нулевая эмиссия» его применения. Продуктом его взаимодействия с воздухом является вода.

Препятствия

Один литр «ЖВ» весит всего 0.07 кг. То есть его удельная плотность составляет 70.99 г/л при 20 K. Жидкий водород требует криогенной технологии хранения, такой как специальные термически изолированные контейнеры и требует особого обращения, что свойственно для всех криогенных материалов. Он близок в этом отношении к жидкому кислороду, но требует большей осторожности из-за пожароопасности. Даже в случае с контейнерами с тепловой изоляцией, его тяжело содержать при той низкой температуре, которая требуется для его сохранения в жидком состоянии (обычно он испаряется со скоростью 1 % в день). При обращении с ним также нужно следовать обычным мерам безопасности при работе с водородом — он достаточно холоден для сжижения воздуха, что взрывоопасно.

Ракетное топливо

Жидкий водород является распространенным компонентом ракетных топлив, которое используется для реактивного ускорения ракет-носителей и космических аппаратов. В большинстве жидкостных ракетных двигателях на водороде, он сначала применяется для регенеративного охлаждения сопла и других частей двигателя, перед его смешиванием с окислителем и сжиганием для получения тяги. Используемые современные двигатели на компонентах H 2 /O 2 потребляют переобогащенную водородом топливную смесь, что приводит к некоторому количеству несгоревшего водорода в выхлопе. Кроме увеличения удельного импульсадвигателя за счет уменьшения молекулярного веса, это еще сокращает эрозию сопла и камеры сгорания.

Такие препятствия использования «ЖВ» в других областях, как криогенная природа и малая плотность, являются также сдерживающим фактором для использования в данном случае. На 2009 год существует только одна ракета-носитель (РН «Дельта-4»), которая целиком является водородной ракетой. В основном «ЖВ» используется либо на верхних ступенях ракет, либо на блоках, которые значительную часть работы по выводу полезной нагрузки в космос выполняют в вакууме. В качестве одной из мер по увеличению плотности этого вида топлива существуют предложения использования шугообразного водорода, то есть полузамерзшей формы «ЖВ».

ВОДОРОД, Н (лат. hydrogenium; а. hydrogen; н. Wasserstoff; ф. hydrogene; и. hidrogeno), — химический элемент периодической системы элементов Менделеева, который относят одновременно к I и VII группам, атомный номер 1, атомная масса 1,0079. Природный водород имеет стабильные изотопы — протий (1 Н), дейтерий (2 Н, или D) и радиоактивный — тритий (3 Н, или Т). Для природных соединений среднее отношение D/Н = (158±2).10 -6 Равновесное содержание 3 Н на Земле ~5.10 27 атомов.

Физические свойства водорода

Водород впервые описал в 1766 английский учёный Г. Кавендиш. При обычных условиях водород — газ без цвета, запаха и вкуса. В природе в свободном состоянии находится в форме молекул Н 2 . Энергия диссоциации молекулы Н 2 — 4,776 эВ; потенциал ионизации атома водорода 13,595 эВ. Водород — самое лёгкое вещество из всех известных, при 0°С и 0,1 МПа 0,0899 кг/м 3 ; t кипения- 252,6°С, t плавления — 259,1°С; критические параметры: t — 240°С, давление 1,28 МПа, плотность 31,2 кг/ м 3 . Наиболее теплопроводный из всех газов — 0,174 Вт/(м.К) при 0°С и 1 МПа, удельная теплоёмкость 14,208.10 3 Дж(кг.К).

Химические свойства водорода

Жидкий водород очень лёгок (плотность при -253°С 70,8 кг/м 3) и текуч ( при -253°С равна 13,8 сП). В большинстве соединений водород проявляет степень окисления +1 (подобен щелочным металлам), реже -1 (подобен гидридам металлов). В обычных условиях молекулярный водород малоактивен; растворимость в воде при 20°С и 1 МПа 0,0182 мл/г; хорошо растворим в металлах — Ni, Pt, Pd и др. С кислородом образует воду с выделением тепла 143,3 МДж/кг (при 25°С и 0,1 МПа); при 550°С и выше реакция сопровождается взрывом. При взаимодействии с фтором и хлором реакции идут также со взрывом. Основные соединения водорода: Н 2 О, аммиак NH 3 , сероводород Н 2 S, CH 4 , гидриды металлов и галогенов CaH 2 , HBr, Hl, а также органические соединения С 2 Н 4 , HCHO, CH 3 OH и др.

Водород в природе

Водород — широко распространённый в природе элемент, содержание его в 1 % (по массе). Главный резервуар водорода на Земле — вода (11,19%, по массе). Водород — один из основных компонентов всех природных органических соединений. В свободном состоянии присутствует в вулканических и других природных газах, в (0,0001%, по числу атомов). Составляет основную часть массы Солнца, звёзд, межзвёздного газа, газовых туманностей. В атмосферах планет присутствует в форме Н 2 , CH 4 , NH 3 , Н 2 О, CH, NHOH и др. Входит в состав корпускулярного излучения Солнца (потоки протонов) и космических лучей (потоки электронов).

Получение и применение водорода

Сырьё для промышленного получения водорода — газы нефтепереработки, продукты газификации и др. Основные способы получения водорода: реакция углеводородов с водяным паром, неполное окисление углеводородов , конверсия окиси , электролиз воды. Водород применяют для производства аммиака, спиртов, синтетического бензина, соляной кислоты, гидроочистки нефтепродуктов, резки металлов водородно-кислородным пламенем.

Водород — перспективное газообразное горючее. Дейтерий и тритий нашли применение в атомной энергетике.

Водород (лат. hydrogenium), Н, химический элемент, первый по порядковому номеру в периодической системе Менделеева; атомная масса 1,00797. При обычных условиях В. - газ; не имеет цвета, запаха и вкуса.

Историческая справка. В трудах химиков 16 и 17 вв. неоднократно упоминалось о выделении горючего газа при действии кислот на металлы. В 1766 Г. Кавендиш собрал и исследовал выделяющийся газ, назвав его «горючий воздух». Будучи сторонником теории флогистона , Кавендиш полагал, что этот газ и есть чистый флогистон. В 1783 А. Лавуазье путём анализа и синтеза воды доказал сложность её состава, а в 1787 определил «горючий воздух» как новый химический элемент (В.) и дал ему современное название hydrog e ne (от греч. h y d o r - вода и genn a o - рождаю), что означает «рождающий воду»; этот корень употребляется в названиях соединений В. и процессов с его участием (например, гидриды, гидрогенизация). Современное русское наименование «В.» было предложено М. Ф. Соловьёвым в 1824.

Распространённость в природе . В. широко распространён в природе, его содержание в земной коре (литосфера и гидросфера) составляет по массе 1%, а по числу атомов 16%. В. входит в состав самого распространённого вещества на Земле - воды (11,19% В. по массе), в состав соединений, слагающих угли, нефть, природные газы, глины, а также организмы животных и растений (т. е. в состав белков, нуклеиновых кислот, жиров, углеводов и др.). В свободном состоянии В. встречается крайне редко, в небольших количествах он содержится в вулканических и других природных газах. Ничтожные количества свободного В. (0,0001% по числу атомов) присутствуют в атмосфере. В околоземном пространстве В. в виде потока протонов образует внутренний («протонный») радиационный пояс Земли . В космосе В. является самым распространённым элементом. В виде плазмы он составляет около половины массы Солнца и большинства звёзд, основную часть газов межзвёздной среды и газовых туманностей. В. присутствует в атмосфере ряда планет и в кометах в виде свободного h 2 , метана ch 4 , аммиака nh 3 , воды h 2 o, радикалов типа ch, nh, oh, sih, ph и т.д. В виде потока протонов В. входит в состав корпускулярного излучения Солнца и космических лучей.

Изотопы, атом и молекула. Обыкновенный В. состоит из смеси 2 устойчивых изотопов: лёгкого В., или протия (1 h), и тяжёлого В., или дейтерия (2 h, или d). В природных соединениях В. на 1 атом 2 h приходится в среднем 6800 атомов 1 h. Искусственно получен радиоактивный изотоп - сверхтяжёлый В., или тритий (3 h, или Т), с мягким?-излучением и периодом полураспада t 1/2 = 12,262 года. В природе тритий образуется, например, из атмосферного азота под действием нейтронов космических лучей; в атмосфере его ничтожно мало (4 · 10 -15 % от общего числа атомов В.). Получен крайне неустойчивый изотоп 4 h. Массовые числа изотопов 1 h, 2 h, 3 h и 4 h, соответственно 1,2, 3 и 4, указывают на то, что ядро атома протия содержит только 1 протон, дейтерия - 1 протон и 1 нейтрон, трития - 1 протон и 2 нейтрона, 4 h - 1 протон и 3 нейтрона. Большое различие масс изотопов В. обусловливает более заметное различие их физических и химических свойств, чем в случае изотопов других элементов.

Атом В. имеет наиболее простое строение среди атомов всех других элементов: он состоит из ядра и одного электрона. Энергия связи электрона с ядром (потенциал ионизации) составляет 13,595 эв . Нейтральный атом В. может присоединять и второй электрон, образуя отрицательный ион Н - ; при этом энергия связи второго электрона с нейтральным атомом (сродство к электрону) составляет 0,78 эв . Квантовая механика позволяет рассчитать все возможные энергетические уровни атома В., а следовательно, дать полную интерпретацию его атомного спектра . Атом В. используется как модельный в квантовомеханических расчётах энергетических уровней других, более сложных атомов. Молекула В. h 2 состоит из двух атомов, соединённых ковалентной химической связью. Энергия диссоциации (т. е. распада на атомы) составляет 4,776 эв (1 эв = 1,60210 · 10 -19 дж ). Межатомное расстояние при равновесном положении ядер равно 0,7414 · a . При высоких температурах молекулярный В. диссоциирует на атомы (степень диссоциации при 2000°С 0,0013, при 5000°С 0,95). Атомарный В. образуется также в различных химических реакциях (например, действием zn на соляную кислоту). Однако существование В. в атомарном состоянии длится лишь короткое время, атомы рекомбинируют в молекулы h 2 .

Физические и химические свойства . В. - легчайшее из всех известных веществ (в 14,4 раза легче воздуха), плотность 0,0899 г/л при 0°С и 1 атм . В. кипит (сжижается) и плавится (затвердевает) соответственно при -252,6°С и -259,1°С (только гелий имеет более низкие температуры плавления и кипения). Критическая температура В. очень низка (-240°С), поэтому его сжижение сопряжено с большими трудностями; критическое давление 12,8 кгс/см 2 (12,8 атм ), критическая плотность 0,0312 г/см 3 . Из всех газов В. обладает наибольшей теплопроводностью, равной при 0°С и 1 атм 0,174 вт/ (м · К ), т. е. 4,16 · 0 -4 кал/ (с · см · °С ). Удельная теплоёмкость В. при 0°С и 1 атм С р 14,208 · 10 3 дж/ (кг · К ), т. е. 3,394 кал/ (г · °С ). В. мало растворим в воде (0,0182 мл/г при 20°С и 1 атм ), но хорошо - во многих металлах (ni, pt, pd и др.), особенно в палладии (850 объёмов на 1 объём pd). С растворимостью В. в металлах связана его способность диффундировать через них; диффузия через углеродистый сплав (например, сталь) иногда сопровождается разрушением сплава вследствие взаимодействия В. с углеродом (так называемая декарбонизация). Жидкий В. очень лёгок (плотность при -253°С 0,0708 г/см 3) и текуч (вязкость при - 253°С 13,8 спуаз ).

В большинстве соединений В. проявляет валентность (точнее, степень окисления) +1, подобно натрию и другим щелочным металлам; обычно он и рассматривается как аналог этих металлов, возглавляющий 1 гр. системы Менделеева. Однако в гидридах металлов ион В. заряжен отрицательно (степень окисления -1), т. е. гидрид na + h - построен подобно хлориду na + cl - . Этот и некоторые другие факты (близость физических свойств В. и галогенов, способность галогенов замещать В. в органических соединениях) дают основание относить В. также и к vii группе периодической системы. При обычных условиях молекулярный В. сравнительно мало активен, непосредственно соединяясь лишь с наиболее активными из неметаллов (с фтором, а на свету и с хлором). Однако при нагревании он вступает в реакции со многими элементами. Атомарный В. обладает повышенной химической активностью по сравнению с молекулярным. С кислородом В. образует воду: h 2 + 1 / 2 o 2 = h 2 o с выделением 285,937 · 10 3 дж/моль , т. е. 68,3174 ккал/моль тепла (при 25°С и 1 атм ). При обычных температурах реакция протекает крайне медленно, выше 550°С - со взрывом. Пределы взрывоопасности водородо-кислородной смеси составляют (по объёму) от 4 до 94% h 2 , а водородо-воздушной смеси - от 4 до 74% h 2 (смесь 2 объёмов h 2 и 1 объёма О 2 называется гремучим газом ). В. используется для восстановления многих металлов, так как отнимает кислород у их окислов:

cuo +Н 2 = cu + h 2 o,

fe 3 o 4 + 4h 2 = 3fe + 4h 2 o, и т.д.

С галогенами В. образует галогеноводороды, например:

h 2 + cl 2 = 2hcl.

При этом с фтором В. взрывается (даже в темноте и при -252°С), с хлором и бромом реагирует лишь при освещении или нагревании, а с иодом только при нагревании. С азотом В. взаимодействует с образованием аммиака: 3h 2 + n 2 = 2nh 3 лишь на катализаторе и при повышенных температурах и давлениях. При нагревании В. энергично реагирует с серой: h 2 + s = h 2 s (сероводород), значительно труднее с селеном и теллуром. С чистым углеродом В. может реагировать без катализатора только при высоких температурах: 2h 2 + С (аморфный) = ch 4 (метан). В. непосредственно реагирует с некоторыми металлами (щелочными, щёлочноземельными и др.), образуя гидриды: h 2 + 2li = 2lih. Важное практическое значение имеют реакции В. с окисью углерода, при которых образуются в зависимости от температуры, давления и катализатора различные органические соединения, например hcho, ch 3 oh и др. Ненасыщенные углеводороды реагируют с В., переходя в насыщенные, например:

c n h 2 n + h 2 = c n h 2 n +2.

Роль В. и его соединений в химии исключительно велика. В. обусловливает кислотные свойства так называемых протонных кислот. В. склонен образовывать с некоторыми элементами так называемую водородную связь , оказывающую определяющее влияние на свойства многих органических и неорганических соединений.

Получение . Основные виды сырья для промышленного получения В. - газы природные горючие , коксовый газ (см. Коксохимия ) и газы нефтепереработки , а также продукты газификации твёрдых и жидких топлив (главным образом угля). В. получают также из воды электролизом (в местах с дешёвой электроэнергией). Важнейшими способами производства В. из природного газа являются каталитическое взаимодействие углеводородов, главным образом метана, с водяным паром (конверсия): ch 4 + h 2 o = co + 3h 2 , и неполное окисление углеводородов кислородом: ch 4 + 1 / 2 o 2 = co + 2h 2 . Образующаяся окись углерода также подвергается конверсии: co + h 2 o = co 2 + h 2 . В., добываемый из природного газа, самый дешёвый. Очень распространён способ производства В. из водяного и паровоздушного газов, получаемых газификацией угля. Процесс основан на конверсии окиси углерода. Водяной газ содержит до 50% h 2 и 40% co; в паровоздушном газе, кроме h 2 и co, имеется значительное количество n 2 , который используется вместе с получаемым В. для синтеза nh 3 . Из коксового газа и газов нефтепереработки В. выделяют путём удаления остальных компонентов газовой смеси, сжижаемых более легко, чем В., при глубоком охлаждении. Электролиз воды ведут постоянным током, пропуская его через раствор koh или naoh (кислоты не используются во избежание коррозии стальной аппаратуры). В лабораториях В. получают электролизом воды, а также по реакции между цинком и соляной кислотой. Однако чаще используют готовый заводской В. в баллонах.

Применение . В промышленном масштабе В. стали получать в конце 18 в. для наполнения воздушных шаров. В настоящее время В. широко применяют в химической промышленности, главным образом для производства аммиака . Крупным потребителем В. является также производство метилового и других спиртов, синтетического бензина (синтина) и других продуктов, получаемых синтезом из В. и окиси углерода. В. применяют для гидрогенизации твёрдого и тяжёлого жидкого топлив, жиров и др., для синтеза hcl, для гидроочистки нефтепродуктов, в сварке и резке металлов кислородо-водородным пламенем (температура до 2800°С) и в атомно-водородной сварке (до 4000°С). Очень важное применение в атомной энергетике нашли изотопы В. - дейтерий и тритий.

Лит.: Некрасов Б. В., Курс общей химии, 14 изд., М., 1962; Реми Г., Курс неорганической химии, пер. с нем., т. 1, М., 1963; Егоров А. П., Шерешевский Д. И., Шманенков И. В., Общая химическая технология неорганических веществ, 4 изд., М., 1964; Общая химическая технология. Под ред. С. И. Вольфковича, т. 1, М., 1952; Лебедев В. В., Водород, его получение и использование, М., 1958; Налбандян А. Б., Воеводский В. В., Механизм окисления и горения водорода, М. - Л., 1949; Краткая химическая энциклопедия, т. 1, М., 1961, с. 619-24.