Формулы солей: принципы составления. Соли

Солями называются сложные вещества, молекулы которых, состоят из атомов металлов и кислотных остатков (иногда могут содержать водород). Например, NaCl – хлорид натрия, СаSO 4 – сульфат кальция и т. д.

Практически все соли являются ионными соединениями, поэтому в солях между собой связаны ионы кислотных остатков и ионы металла:

Na + Cl – – хлорид натрия

Ca 2+ SO 4 2– – сульфат кальция и т.д.

Соль является продуктом частичного или полного замещения металлом атомов водорода кислоты. Отсюда различают следующие виды солей:

1. Средние соли – все атомы водорода в кислоте замещены металлом: Na 2 CO 3 , KNO 3 и т.д.

2. Кислые соли – не все атомы водорода в кислоте замещены металлом. Разумеется, кислые соли могут образовывать только двух- или многоосновные кислоты. Одноосновные кислоты кислых солей давать не могут: NaHCO 3 , NaH 2 PO 4 ит. д.

3. Двойные соли – атомы водорода двух- или многоосновной кислоты замещены не одним металлом, а двумя различными: NaKCO 3 , KAl(SO 4) 2 и т.д.

4. Соли основные можно рассматривать как продукты неполного, или частичного, замещения гидроксильных групп оснований кислотными остатками: Аl(OH)SO 4 , Zn(OH)Cl и т.д.

По международной номенклатуре название соли каждой кислоты происходит от латинского названия элемента. Например, соли серной кислоты называются сульфатами: СаSO 4 – сульфат кальция, Mg SO 4 – сульфат магния и т.д.; соли соляной кислоты называются хлоридами: NaCl – хлорид натрия, ZnCI 2 – хлорид цинка и т.д.

В название солей двухосновных кислот добавляют частицу «би» или «гидро»: Mg(HCl 3) 2 – бикарбонат или гидрокарбонат магния.

При условии, что в трехосновной кислоте замещён на металл только один атом водорода, то добавляют приставку «дигидро»: NaH 2 PO 4 – дигидрофосфат натрия.

Соли – это твёрдые вещества, обладающие самой различной растворимостью в воде.

Химические свойства солей

Химические свойства солей определяются свойствами катионов и анионов, которые входят в их состав.

1. Некоторые соли разлагаются при прокаливании:

CaCO 3 = CaO + CO 2

2. Взаимодействуют с кислотами с образованием новой соли и новой кислоты. Для осуществление этой реакции необходимо, чтобы кислота была более сильная чем соль, на которую воздействует кислота:

2NaCl + H 2 SO 4 → Na 2 SO 4 + 2HCl.

3. Взаимодействуют с основаниями , образуя новую соль и новое основание:

Ba(OH) 2 + Mg SO 4 → BaSO 4 ↓ + Mg(OH) 2 .

4. Взаимодействуют друг с другом с образованием новых солей:

NaCl + AgNO 3 → AgCl + NaNO 3 .

5. Взаимодействуют с металлами, которые стоят в раду активности до металла, который входит в состав соли:

Fe + CuSO 4 → FeSO 4 + Cu↓.

Остались вопросы? Хотите знать больше о солях?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Основы деления солей на отдельные группы были заложены в трудах французского химика и аптекаря Г. Руэля (\(1703\)–\(1770\)) . Именно он в \(1754\) г. предложил разделить известные к тому времени соли на кислые, основные и средние (нейтральные). В настоящее время выделяют и другие группы этого чрезвычайно важного класса соединений.

Средние соли

Средними называют соли, в состав которых входят металлический химический элемент и кислотный остаток.

В состав солей аммония вместо металлического химического элемента входит одновалентная группа аммония NH 4 I .

Примеры средних солей:


Na I Cl I - хлорид натрия;
Al 2 III SO 4 II 3 - сульфат алюминия;
NH I 4 NO 3 I - нитрат аммония.

Кислые соли

Кислыми называют соли, в состав которых, кроме металлического химического элемента и кислотного остатка, входят атомы водорода.

Обрати внимание!

Составляя формулы кислых солей, следует иметь в виду, что валентность остатка от кислоты численно равна количеству атомов водорода, входивших в состав молекулы кислоты и замещённых металлом.

При составлении названия такого соединения к названию соли добавляется приставка «гидро », если в остатке от кислоты имеется один атом водорода, и «дигидро », если в остатке от кислоты содержатся два атома водорода.

Примеры кислых солей:

Ca II HCO 3 ⏞ I 2 - гидрокарбонат кальция;
Na 2 I HPO 4 ⏞ II - гидрофосфат натрия;
Na I H 2 PO 4 ⏞ I - дигидрофосфат натрия.

Простейшим примером кислых солей может служить пищевая сода, т. е. гидрокарбонат натрия \(NaHCO_3\).

Основные соли

Основными называют соли, в состав которых, кроме металлического химического элемента и кислотного остатка, входят гидроксогруппы.

Основные соли можно рассматривать как продукт неполной нейтрализации многокислотного основания.

Обрати внимание!

Составляя формулы таких веществ, следует иметь в виду, что валентность остатка от основания численно равна количеству гидроксогрупп, «ушедших» из состава основания.

При составлении названия основной соли к названию соли добавляется приставка «гидроксо », если в остатке от основания имеется одна гидроксогруппа, и «дигидроксо », если в остатке от основания содержатся две гидроксогруппы.

Примеры основных солей:


MgOH ⏞ I Cl I - гидроксохлорид магния;
Fe OH ⏞ II NO 3 2 I - гидроксонитрат железа(\(III\));
Fe OH 2 ⏞ I NO 3 I - дигидроксонитрат железа(\(III\)).

Известным примером основных солей может служить налёт зелёного цвета гидроксокарбоната меди(\(II\)) \((CuOH)_2CO_3\), образующийся с течением времени на медных предметах и предметах, изготовленных из сплавов меди, если они контактируют с влажным воздухом. Такой же состав имеет и минерал малахит.

Комплексные соли

Комплексные соединения - разнообразный класс веществ. Заслуга в создании теории, объясняющей их состав и строение, принадлежит лауреату Нобелевской премии по химии \(1913\) г. швейцарскому учёному А. Вернеру (\(1866\)–\(1919\)). Правда, термин «комплексные соединения» в \(1889\) г. был введён другим выдающимся химиком, лауреатом Нобелевской премии \(1909\) г. В. Оствальдом (\(1853\)–\(1932\)).

В составе катиона или аниона комплексных солей имеется элемент-комплексообразователь , связанный с так называемыми лигандами . Число лигандов, которое присоединяет комплексообразователь, называется координационным числом . Например, координационное число двухвалентной меди, а также бериллия, цинка, равно \(4\). Координационное число алюминия, железа, трёхвалентного хрома равно \(6\).

В названии комплексного соединения число лигандов, соединённое с комплексообразователем, отображается греческими числительными: \(2\) - «ди », \(3\) - «три », \(4\) - «тетра », \(5\) - «пента », \(6\) - «гекса ». В качестве лигандов могут выступать как электрически нейтральные молекулы, так и ионы.

Название комплексного аниона начинается с указания состава внутренней сферы.

Если в качестве лигандов выступают анионы, к их названию добавляется окончание «–о »:

\(–Cl\) - хлоро-, \(–OH\) - гидроксо-, \(–CN\) - циано-.

Если лигандами являются электрически нейтральные молекулы воды, используется название «аква », а если аммиака - название «аммин ».

Затем называют комплексообразователь, используя его латинское название и окончание «–ат », после чего без пробела римскими цифрами в скобках указывают степень окисления (если комплексообразователь может иметь несколько степеней окисления).

После обозначения состава внутренней сферы указывают название катиона внешней сферы - той, что в химической формуле вещества находится вне квадратных скобок.

Пример:

K 2 Zn OH 4 - тетрагидроксоцинкат калия,
K 3 Al OH 6 - гексагидроксоалюминат калия,
K 4 Fe CN 6 - гексацианоферрат(\(II\)) калия.

В школьных учебниках формулы комплексных солей более сложного состава, как правило, упрощаются. Например, формулу тетрагидроксодиакваалюмината калия K Al H 2 O 2 OH 4 принято записывать как формулу тетрагидроксоалюмината.

Если комплексообразователь входит в состав катиона, то название внутренней сферы составляют так же, как в случае комплексного аниона, но используют русское название комплексообразователя и в скобках указывают степень его окисления.

Пример:

Ag NH 3 2 Cl - хлорид диамминсеребра,
Cu H 2 O 4 SO 4 - сульфат тетрааквамеди(\(II\)).

Кристаллогидраты солей

Гидратами называют продукты присоединения воды к частичкам вещества (термин образован от греческого hydor - «вода»).

Многие соли выпадают в осадок из растворов в виде кристаллогидратов - кристаллов, содержащих молекулы воды. В кристаллогидратах молекулы воды прочно связаны с катионами или анионами, образующими кристаллическую решётку. Многие соли такого вида по сути являются комплексными соединениями. Хотя многие из кристаллогидратов известны с незапамятных времён, начало систематическому изучению их состава положил голландский химик Б. Розебом (\(1857\)–\(1907\)).

В химических формулах кристаллогидратов принято указывать соотношение количества вещества соли и количество вещества воды.

Обрати внимание!

Точка, которая делит химическую формулу кристаллогидрата на две части, в отличие от математических выражений не обозначает действие умножения и читается как предлог «с».

.

Что такое соли?

Соли – это такие сложные вещества, которые состоят из атомов металла и кислотных остатков. В некоторых случаях соли в своем составе могут содержать водород.

Если мы внимательно подойдем к рассмотрению этого определения, то заметим, что по своему составу соли чем-то похожи на кислоты, только с той разницей, что кислоты состоят из атомов водорода, а соли содержат ионы металла. Из этого следует, что соли являются продуктами замещения атомов водорода в кислоте на ионы металла. Так, к примеру, если взять известную каждому поваренную соль NaCl, то ее можно рассматривать как продукт замещения водорода в соляной кислоте НС1 на ион натрия.

Но бывают и исключения. Взять, например, соли аммония, в них кислотные остатки с частицей NH4+, а не с атомами металла.

Типы солей



А теперь давайте более подробно рассмотрим классификацию солей.

Классификация:

К кислым солям относятся такие, в которых атомы водорода в кислоте частично заменены атомами металла. Их можно получить с помощью нейтрализации основания избытком кислоты.
К средним солям или как их еще нормальным, относятся такие соли, у которых в молекулах кислоты все атомы водорода замещены на атомы металла, например, таких, как Na2CO3, KNO3 и т.д.
К основным солям относятся те, где у которых происходить неполное или частичное замещение гидроксильных групп оснований кислотными остатками, такими, как: Аl(OH)SO4 , Zn(OH)Cl и т.д.
В составе двойных солей находится два различных катиона, которые получаются с помощью кристаллизации из смешанного раствора солей с разными катионами, но одинаковыми анионами.
Но, а к смешанным солям относятся такие, в составе которых находятся два различных аниона. Также существуют комплексные соли, в состав которых входит комплексный катион или комплексный анион.

Физические свойства солей



Мы уже с вами знаем, что соли являются твердыми веществами, но следует знать, им свойственна различная растворимость в воде.

Если рассматривать соли с точки зрения растворимости в воде, то их можно поделить на такие группы, как:

Растворимые (Р),
- нерастворимые (Н)
- малорастворимые (М).

Номенклатура солей

Чтобы определить степень растворимости солей, можно обратиться к таблице растворимости кислот, оснований и солей в воде.



Как правило, все названия солее состоят из названий аниона, который представлен в именительном падеже и катиона, который стоит в родительном падеже.

Например: Na2SO4 - сульфат (И.п.) натрия (Р.п.).

Кроме того, для металлов в скобках указывают переменную степень окисления.

Возьмем для примера:

FeSO4 - сульфат железа (II).

Также следует знать, что существует международная номенклатура названия солей каждой кислоты, зависящая от латинского названия элемента. Так, например, соли серной кислоты, называются сульфатами. К примеру, СаSO4 – носит название сульфата кальция. А вот хлоридами называют соли соляной кислоты. Например, всем нам знакомая, NaCl называется хлоридом натрия.

Если же соли двухосновных кислот, то к их названию прибавляют частицу «би» или «гидро».

Например: Mg(HCl3)2 – будет звучать, как бикарбонат или гидрокарбонат магния.

Если в трехосновной кислоте один из атомов водорода заменить на металл, то следует еще добавить приставку «дигидро» и мы получим:

NaH2PO4 – дигидрофосфат натрия.

Химические свойства солей

А сейчас перейдем к рассмотрению химических свойств солей. Дело в том, что они определяются свойствами катионов и анионов, которые входят в их состав.





Значение соли для человеческого организма

В обществе давно идут дискуссии о вреде и пользе соли, которую она оказывает на организм человека. Но какой бы точки зрения не придерживались оппоненты, следует знать, что поваренная соль это минеральное природное вещество, которое жизненно необходимо для нашего организма.

Также следует знать, что при хронической нехватке в организме хлорида натрия, можно получить летальный исход. Ведь, если вспомнить уроки биологии, то нам известно, что тело человека на семьдесят процентов состоит из воды. А благодаря соли происходят процессы регулирования и поддержки водного баланса в нашем организме. Поэтому исключать употребление соли ни в коем случае нельзя. Конечно же, безмерное употребление соли так же ни к чему хорошему не приведет. И тут напрашивается вывод, что все должно быть в меру, так как ее недостаток, также как и избыток могут привести к нарушению баланса в нашем рационе.



Применение солей

Соли нашли свое применение, как в производственных целях, так и в нашей повседневной жизни. А сейчас давайте рассмотрим более детально и узнаем, где и какие соли чаще всего применяются.

Соли соляной кислоты

Из этого вида солей чаще всего используют хлорид натрия и хлорид калия. Поваренную соль, которую мы с вами употребляем в пищу добывают из морской, озерной воды, а также на соляных шахтах. И если хлорид натрия мы употребляем в пищу, то в промышленности его используют для получения хлора и соды. А вот хлорид калия незаменим в сельском хозяйстве. Его применяют, как калийное удобрение.

Соли серной кислоты

Что же касается солей серной кислоты, то они нашли широкое применение в медицине и строительстве. С ее помощью изготавливают гипс.

Соли азотной кислоты

Соли азотной кислоты, или как их еще называют нитраты, применяются в сельском хозяйстве в качестве удобрений. Самыми значимыми среди этих солей является нитрат натрия, нитрат калия, нитрат кальция и нитрат аммония. Их еще называют селитрами.

Ортофосфаты

Среди ортофосфатов, одним из наиболее важных, является ортофосфат кальция. Эта соль входит в основу таких минералов, как фосфориты и апатиты, которые необходимы при изготовлении фосфорных удобрений.

Соли угольной кислоты

Соли угольной кислоты или карбонат кальция можно встретит в природе, в виде мела, известняка и мрамора. Его используют для изготовления извести. А вот карбонат калия применяется, как составляющая сырья при производстве стекла и мыла.

Конечно, о соли вы знаете много интересного, но есть и такие факты, о которых вы вряд ли догадывались.

Вам, наверное, известен тот факт, что на Руси гостей было принято встречать с хлебом и солью, но злили вы, что за соль даже платили налог.

Известно ли вам, что были такие времена, когда соль ценилась больше золота. В древние времена римским воинам даже жалование платили солью. А самым дорогим и важным гостям в знак уважения преподносили горсть соли.

А знаете ли вы, что такое понятие, как «заработная плата» произошло от английского слова salary.

Оказывается, что поваренную соль можно применять в медицинских целях, так как она является отличным антисептиком и обладает ранозаживляющим и бактерицидным свойством. Ведь, наверное, каждый из вас наблюдал, будучи на море, что ранки на коже и мозоли в соленой морской воде заживают намного быстрее.

А знаете, почему зимой в гололед принято посыпать дорожки солью. Оказывается, если на лед насыпать соли, то лед превращается в воду, так как температура ее кристаллизации снизится на 1-3 градуса.

А известно ли вам, сколько соли человек употребляет в течение года. Оказывается, что за год мы с вами съедаем около восьми килограммов соли.

Оказывается, что людям, живущим в жарких странах, нужно употреблять соли в четыре раза больше, чем тем, кто живет в холодных климатических зонах, потому что во время жары выделяется большое количество пота, а с ним и выводятся соли с организма.

Поваренная соль — это хлорид натрия, применяемый в качестве добавки к пище, консерванта продуктов питания. Используется также в химической промышленности, медицине. Служит важнейшим сырьем для получения едкого натра, соды и других веществ. Формула соли поваренной — NaCl.

Образование ионной связи между натрием и хлором

Химический состав хлорида натрия отражает условная формула NaCl, которая дает представление о равном количестве атомов натрия и хлора. Но вещество образовано не двухатомными молекулами, а состоит из кристаллов. При взаимодействии щелочного металла с сильным неметаллом каждый атом натрия отдает более электроотрицательному хлору. Возникают катионы натрия Na + и анионы кислотного остатка соляной кислоты Cl - . Разноименно заряженные частицы притягиваются, образуя вещество с ионной кристаллической решеткой. Маленькие катионы натрия расположены между крупными анионами хлора. Число положительных частиц в составе хлорида натрия равно количеству отрицательных, вещество в целом является нейтральным.

Химическая формула. Поваренная соль и галит

Соли — это сложные вещества ионного строения, названия которых начинаются с наименования кислотного остатка. Формула соли поваренной — NaCl. Геологи минерал такого состава называют «галит», а осадочную породу — «каменная соль». Устаревшей химический термин, который часто употребляется на производстве, — «хлористый натрий». Это вещество известно людям с глубокой древности, когда-то его считали «белым золотом». Современные ученики школ и студенты при чтении уравнений реакций с участием хлорида натрия называют химические знаки («натрий хлор»).

Проведем несложные расчеты по формуле вещества:

1) Mr (NaCl) = Ar (Na) + Ar (Cl) = 22,99 + 35,45 = 58,44.

Относительная составляет 58,44 (в а.е.м.).

2) Численно равна молекулярному весу молярная масса, но эта величина имеет единицы измерения г/моль: М (NaCl) = 58,44 г/моль.

3) Образец соли массой 100 г содержит 60,663 г атомов хлора и 39,337 г натрия.

Физические свойства поваренной соли

Хрупкие кристаллы галита — бесцветные или белые. В природе также встречаются месторождения каменной соли, окрашенной в серый, желтый либо голубой цвет. Иногда минеральное вещество обладает красным оттенком, что обусловлено видами и количеством примесей. Твердость галита по составляет всего 2-2,5, стекло оставляет на его поверхности черту.

Другие физические параметры хлорида натрия:

  • запах — отсутствует;
  • вкус — соленый;
  • плотность — 2,165 г/ см3 (20 °C);
  • температура плавления — 801 °C;
  • точка кипения — 1413 °C;
  • растворимость в воде — 359 г/л (25 °C);

Получение хлорида натрия в лаборатории

При взаимодействии металлического натрия с газообразным хлором в пробирке образуется вещество белого цвета — хлорид натрия NaCl (формула поваренной соли).

Химия дает представление о различных способах получения одного и того же соединения. Вот некоторые примеры:

NaOH (водн.) + HCl = NaCl + H 2 O.

Окислительно-восстановительная реакция между металлом и кислотой:

2Na + 2HCl = 2NaCl + Н 2 .

Действие кислоты на оксид металла: Na 2 O + 2HCl (водн.) = 2NaCl + H 2 O

Вытеснение слабой кислоты из раствора ее соли более сильной:

Na 2 CO 3 + 2HCl (водн.) = 2NaCl + H 2 O + CO 2 (газ).

Для применения в промышленных масштабах все эти методы слишком дорогие и сложные.

Производство поваренной соли

Еще на заре цивилизации люди знали, что после засолки мясо и рыба сохраняются дольше. Прозрачные, правильной формы кристаллы галита использовались в некоторых древних странах вместо денег и были на вес золота. Поиск и разработка месторождений галита позволили удовлетворить растущие потребности населения и промышленности. Важнейшие природные источники поваренной соли:

  • залежи минерала галита в разных странах;
  • вода морей, океанов и соленых озер;
  • прослойки и корки каменной соли на берегах соленых водоемов;
  • кристаллы галита на стенках вулканических кратеров;
  • солончаки.

В промышленности используются четыре основных способа получения поваренной соли:

  • выщелачивание галита из подземного слоя, испарение полученного рассола;
  • добыча в ;
  • выпаривание или рассола соленых озер (77% от массы сухого остатка приходится на хлорид натрия);
  • использование побочного продукта опреснения соленых вод.

Химические свойства хлорида натрия

По своему составу NaCl — это средняя соль, образованная щелочью и растворимой кислотой. Хлорид натрия — сильный электролит. Притяжение между ионами настолько велико, что его могут разрушить только сильно полярные растворители. В воде вещества распадается, освобождаются катионы и анионы (Na + , Cl -). Их присутствием обусловлена электропроводность, которой обладает раствор поваренной соли. Формула в этом случае записывается так же, как для сухого вещества — NaCl. Одна из качественных реакций на катион натрия — окрашивание в желтый цвет пламени горелки. Для получения результата опыта нужно набрать на чистую проволочную петлю немного твердой соли и внести в среднюю часть пламени. Свойства поваренной соли также связаны с особенностью аниона, которая заключается в качественной реакции на хлорид-ион. При взаимодействии с нитратом серебра в растворе выпадает белый осадок хлорида серебра (фото). Хлороводород вытесняется из соли более сильными кислотами, чем соляная: 2NaCl + H 2 SO 4 = Na 2 SO 4 + 2HCl. При обычных условиях хлорид натрия не подвергается гидролизу.

Сферы применения каменной соли

Хлорид натрия снижает температуру плавления льда, поэтому зимой на дорогах и тротуарах используется смесь соли с песком. Она впитывает в себя большое количество примесей, при таянии загрязняет реки и ручьи. Дорожная соль также ускоряет процесс коррозии автомобильных кузовов, повреждает деревья, посаженные рядом с дорогами. В химической промышленности хлорид натрия используется как сырье для получения большой группы химических веществ:

  • соляной кислоты;
  • металлического натрия;
  • газообразного хлора;
  • каустической соды и других соединений.

Кроме того, поваренная соль применяется в производстве мыла, красителей. Как пищевой антисептик используется при консервировании, засолке грибов, рыбы и овощей. Для борьбы с нарушениями работы щитовидной железы у населения формула соли поваренной обогащается за счет добавления безопасных соединений йода, например, KIO 3 , KI, NaI. Такие добавки поддерживают выработку гормона щитовидной железы, предотвращают заболевание эндемическим зобом.

Значение хлорида натрия для организма человека

Формула соли поваренной, ее состав приобрел жизненно важное значение для здоровья человека. Ионы натрия участвуют в передаче нервных импульсов. Анионы хлора необходимы для выработки соляной кислоты в желудке. Но слишком большое содержание поваренной соли в пище может приводить к высокому кровяному давлению и повышению риска развития заболеваний сердца и сосудов. В медицине при большой кровопотере пациентам вводят физиологический солевой раствор. Для его получения в одном литре дистиллированной воды растворяют 9 г хлорида натрия. Человеческий организм нуждается в непрерывном поступлении этого вещества с пищей. Выводится соль через органы выделения и кожу. Среднее содержание хлорида натрия в теле человека составляет примерно 200 г. Европейцы потребляют в день около 2-6 г поваренной соли, в жарких странах эта цифра выше в связи с более высоким потоотделением.

Солями называются электролиты, диссоциирующие в водных растворах с образованием обязательно катиона металла и аниона кислотного остатка
Классификация солей приведена в табл. 9.

При написании формул любых солей необходимо руководствоваться одним правилом: суммарные заряды катионов и анионов должны быть равны по абсолютной величине. Исходя из этого, должны расставляться индексы. На пример, при написании формулы нитрата алюминия мы учитываем,что заряд катиона алюминия +3, а питрат-иона - 1: AlNO 3 (+3), и с помощью индексов уравниваем заряды (наименьшее общее кратное для 3 и 1 равно 3. Делим 3 на абсолютную величину заряда катиона алюминия - получается индекс. Делим 3 на абсолютную величину заряда аниона NO 3 — получается индекс 3). Формула: Al(NO 3) 3

Средние, или нормальные, соли имеют в своем составе только катионы металла и анионы кислотного остатка. Их названия образованы от латинского названия элемента, образующего кислотный остаток, путем добавления соответствующего окончания в зависимости от степени окисления этого атома. Например, соль серной кислоты Na 2 SО 4 носит название (степень окисления серы +6), соль Na 2 S - (степень окисления серы -2) и т. п. В табл. 10 приведены названия солей, образованных наиболее широко применяемыми кислотами.

Названия средних солей лежат в основе всех других групп солей.

■ 106 Напишите формулы следующих средних солей: а) сульфат кальция; б) нитрат магния; в) хлорид алюминия; г) сульфид цинка; д) ; е) карбонат калия; ж) силикат кальция; з) фосфат железа (III).

Кислые соли отличаются от средних тем, что в их состав, помимо катиона металла, входит катион водорода, например NaHCO3 или Ca(H2PO4)2. Кислую соль можно представить как продукт неполного замещения атомов водорода в кислоте металлом. Следовательно, кислые соли могут быть образованы только двух- и более основными кислотами.
В состав молекулы кислой соли обычно входит «кислый» ион, зарядность которого зависит от ступени диссоциации кислоты. Например, диссоциация фосфорной кис лоты идет по трем ступеням:

На первой ступени диссоциации образуется однозарядный анион Н 2 РО 4 . Следовательно, в зависимости от заряда катиона металла, формулы солей будут выглядеть как NaH 2 PО 4 , Са(Н 2 РО 4) 2 , Ва(Н 2 РО 4) 2 и т. д. На второй ступени диссоциации образуется уже двухзарядный анион HPO 2 4 — . Формулы солей будут иметь такой вид: Na 2 HPО 4 , СаНРО 4 и т. д. Третья ступень диссоциации кислых солей не дает.
Названия кислых солей образованы от названий средних с добавлением приставки гидро-(от слова «гидроге-ниум» - ):
NaHCО 3 - гидрокарбонат натрия KHSО 4 - гидросульфат калия СаНРО 4 - гидрофосфат кальция
Если в состав кислого иона входят два атома водорода, например Н 2 РО 4 — , к названию соли добавляется еще приставка ди- (два): NaH 2 PО 4 - дигидрофосфат натрия, Са(Н 2 РО 4) 2 - дигидрофосфат кальция и т. д.

107. Напишите формулы следующих кислых солей: а) гидросульфат кальция; б) дигидрофосфат магния; в) гидрофосфат алюминия; г) гидрокарбонат бария; д) гидросульфит натрия; е) гидросульфит магния.
108. Можно ли получить кислые соли соляной и азотной кислоты. Обоснуйте свой ответ.

Основные соли отличаются от остальных тем, что, помимо катиона металла и аниона кислотного остатка, в их состав входят анионы гидроксила, например Al(OH)(NО3) 2 . Здесь заряд катиона алюминия +3, а заряды гидроксил-иона-1 и двух нитрат-ионов - 2, всего - 3.
Названия основных солей образованы от названий средних с добавлением слова основной, например: Сu 2 (ОН) 2 СO 3 - основной карбонат меди, Al(OH) 2 NO 3 - основной нитрат алюминия.

109. Напишите формулы следующих основных солей: а) основной хлорид железа (II); б) основной сульфат железа (III); в) основной нитрат меди (II); г) основной хлорид кальция;д) основной хлорид магния; е) основной сульфат железа (III) ж) основной хлорид алюминия.

Формулы двойных солей, например KAl(SO4)3, строят, исходя из суммарных зарядов обоих катионов металлов и суммарного заряда анион

Суммарный заряд катионов + 4 , суммарный заряд анионов -4.
Названия двойных солей образуют так же, как и средних, только указывают названия обоих металлов: KAl(SO4)2 - сульфат калия-алюминия.

■ 110. Напишите формулы следующих солей:
а) фосфат магния; б) гидрофосфат магния; в) сульфат свинца; г) гидросульфат бария; д) гидросульфит бария; е) силикат калия; ж) нитрат алюминия; з) хлорид меди (II); и) карбонат железа (III); к) нитрат кальция; л) карбонат калия.

Химические свойства солей

1. Все средние соли являются сильными электролитами и легко диссоциируют:
Na 2 SO 4 ⇄ 2Na + + SO 2 4 —
Средние соли могут взаимодействовать с металлами, стоящими ряду напряжений левее металла, входящего в состав соли:
Fe + CuSO 4 = Сu + FeSO 4
Fe + Сu 2+ + SO 2 4 — = Сu + Fe 2+ + SO 2 4 —
Fe + Cu 2+ = Сu + Fe 2+
2. Соли реагируют со щелочами и кислотами по правилам, описанным в разделах «Основания» и «Кислоты»:
FeCl 3 + 3NaOH = Fe(OH) 3 ↓ + 3NaCl
Fe 3+ + 3Cl — + 3Na + + 3ОН — = Fe(OH) 3 + 3Na + + 3Cl —
Fe 3+ + 3OH — =Fe(OH) 3
Na 2 SO 3 + 2HCl = 2NaCl + H 2 SO 3
2Na + + SO 2 3 — + 2H + + 2Cl — = 2Na + + 2Cl — + SO 2 + H 2 O
2H + + SO 2 3 — = SO 2 + H 2 O
3. Соли могут взаимодействовать между собой, в результате чего образуются новые соли:
AgNO 3 + NaCl = NaNO 3 + AgCl
Ag + + NO 3 — + Na + + Cl — = Na + + NO 3 — + AgCl
Ag + + Cl — = AgCl
Поскольку эти обменные реакции осуществляются в основном в водных растворах, они протекают лишь тогда, когда одна из образующихся солей выпадает в осадок.
Все реакции обмена идут в соответствии с условиями протекания реакций до конца, перечисленными в § 23, стр. 89.

■ 111. Составьте уравнения следующих реакций и, пользуясь таблицей растворимости, определите, пройдут ли они до конца:
а) хлорид бария + ;
б) хлорид алюминия + ;
в) фосфат натрия + нитрат кальция;
г) хлорид магния + сульфат калия;
д) + нитрат свинца;
е) карбонат калия + сульфат марганца;
ж) + сульфат калия.
Уравнения записывайте в молекулярной и ионных формах.

■ 112. С какими из перечисленных ниже веществ будет реагировать хлорид железа (II): а) ; б) карбонат -кальция; в) гидроокись натрия; г) кремниевый ангидрид; д) ; е) гидроокись меди (II); ж) ?

113. Опишите свойства карбоната кальция как средней соли. Все уравнения записывайте в молекулярной и ионной формах.
114. Как осуществить ряд превращений:

Все уравнения записывайте в молекулярной и ионной формах.
115. Какое количество соли получится при реакции 8 г серы и 18 г цинка?
116. Какой объем водорода выделится при взаимодействии 7 г железа с 20 г серной кислоты?
117. Сколько молей поваренной соли получится при реакции 120 г едкого натра и 120 г соляной кислоты?
118. Сколько нитрата калия получится при реакции 2 молей едкого кали и 130 г азотной кислоты?

Гидролиз солей

Специфическим свойством солей является их способность гидролизоваться - подвергаться гидролизу (от греч. «гидро»-вода, «лизис» - разложение), т. е. разложению под действием воды. Считать гидролиз разложением в том смысле, в каком мы обычно это понимаем, нельзя, но несомненно одно - в реакции гидролиза всегда участвует .
- очень слабый электролит, диссоциирует плохо
Н 2 О ⇄ Н + + ОН —
и не меняет окраску индикатора. Щелочи и кислоты меняют окраску индикаторов, так как при их диссоциации в растворе образуется избыток ионов ОН — (в случае щелочей) и ионов Н + в случае кислот. В таких солях, как NaCl, K 2 SО 4 , которые образованы сильной кислотой (НСl, H 2 SO 4) и сильным основанием (NaOH, КОН), индикаторы окраски не меняют, так как в растворе этих
солей гидролиз практически не идет.
При гидролизе солей возможны четыре случая в зависимости от того, сильными или слабыми кислотой и основанием образована соль.
1. Если мы возьмем соль сильного основания и слабой кислоты, например K 2 S, произойдет следующее. Сульфид калия диссоциирует на ионы как сильный электролит:
K 2 S ⇄ 2K + + S 2-
Наряду с этим слабо диссоциирует :
H 2 O ⇄ H + + OH —
Анион серы S 2- является анионом слабой сероводородной кислоты, которая диссоциирует плохо. Это приводит к тому, что анион S 2- начинает присоединять к себе из воды катионы водорода, постепенно образуя малодиссоциируюшие группировки:
S 2- + H + + OH — = HS — + OH —
HS — + H + + OH — = H 2 S + OH —
Поскольку катионы Н + из воды связываются, а анионы ОН — остаются, реакция среды становится щелочной. Таким образом, при гидролизе солей, образованных сильным основанием и слабой кислотой, реакция среды всегда бывает щелочная.

■ 119.Объясните при помощи ионных уравнений процесс гидролиза карбоната натрия.

2. Если берется соль, образованная слабым основанием и сильной кислотой, например Fe(NО 3) 3 , то при ее диссоциации образуются ионы:
Fe(NO 3) 3 ⇄ Fe 3+ + 3NО 3 —
Катион Fe3+ является катионом слабого основания - железа, которая диссоциирует очень плохо. Это приводит к тому, что катион Fe 3+ начинает присоединять к себе из воды анионы ОН — , образуя при этом мало-диссоциирующие группировки:
Fe 3+ + Н + + ОН — = Fe(OH) 2+ + + Н +
и далее
Fe(ОH) 2+ + Н + + ОН — = Fe(OH) 2 + + Н +
Наконец, процесс может дойти и до последней своей ступени:
Fe(OH) 2 + + Н + + ОН — = Fe(OH) 3 + H +
Следовательно, в растворе окажется избыток катионов водорода.
Таким образом, при гидролизе соли, образованной слабым основанием и сильной кислотой, реакция среды всегда кислая.

■ 120. Объясните при помощи ионных уравнений ход гидролиза хлорида алюминия.

3. Если соль образована сильным ос-нованием и сильной кислотой, то тогда ни катион, ни анион не связывает ионов воды и реакция остается нейтральной. Гидролиз практически не происходит.
4. Если соль образована слабым основанием и слабой кислотой, то реакция среды зависит от их степени диссоциации. Если основание и кислота имеют практически одинаковую , то реакция среды будет нейтральной.

■ 121. Нередко приходится видеть, как при реакции обмена вместо ожидаемого осадка соли выпадает осадок металла, например при реакции между хлоридом железа (III) FeCl 3 и карбонатом натрия Na 2 CО 3 образуется не Fe 2 (CО 3) 3 , a Fe(OH) 3 . Объясните это явление.
122. Среди перечисленных ниже солей укажите те, которые в растворе подвергаются гидролизу: KNO 3 , Cr 2 (SO 4) 3 , Аl 2 (СO 3) 3 , CaCl 2 , K 2 SiO 3 , Al 2 (SО 3) 3 .

Особенности свойств кислых солей

Несколько иные свойства у кислых солей. Они могут вступать в реакции с сохранением и с разрушением кислого иона. Например, реакция кислой соли с щелочью приводит к нейтрализации кислой соли и разрушению кислого иона, например:
NaHSO4 + КОН = KNaSO4 + Н2O
двойная соль
Na + + HSO 4 — + К + + ОН — = К + + Na + + SO 2 4 — + Н2O
HSO 4 — + OH — = SO 2 4 — + Н2О
Разрушение кислого иона можно представить следующим образом:
HSO 4 — ⇄ H + + SO 4 2-
H + + SO 2 4 — + OH — = SO 2 4 — + H2O
Разрушается кислый ион и при реакции с кислотами:
Mg(HCO3)2 + 2НСl = MgCl2 + 2Н2Сo3
Mg 2+ + 2НСО 3 — + 2Н + + 2Сl — = Mg 2+ + 2Сl — + 2Н2O + 2СO2
2НСО 3 — + 2Н + = 2Н2O + 2СO2
HCO 3 — + Н + = Н2O + СО2
Нейтрализацию можно проводить той же щелочью, которой образована соль:
NaHSO4 + NaOH = Na2SO4 + Н2O
Na + + HSO 4 — + Na + + ОН — = 2Na + + SO 4 2- + H2O
HSO 4 — + OH — = SO 4 2- + Н2O
Реакции с солями протекают без разрушения кислого иона:
Са(НСO3)2 + Na2CO3 = СаСО3 + 2NaHCO3
Са 2+ + 2НСO 3 — + 2Na + + СО 2 3 — = CaCO3↓+ 2Na + + 2НСO 3 —
Ca 2+ + CO 2 3 — = CaCO3
■ 123. Напишите в молекулярной и ионной формах уравнения следующих реакций:
а) гидросульфид калия + ;
б) гидрофосфат натрия + едкое кали;
в) дигидрофосфат кальция + карбонат натрия;
г) гидрокарбонат бария + сульфат калия;
д) гидросульфит кальция + .

Получение солей

На основании изученных свойств основных классов неорганических веществ можно вывести 10 способов получения солей.
1. Взаимодействием металла с неметаллом:
2Na + Cl2 = 2NaCl
Таким способом могут быть получены только соли бескислородных кислот. Это не ионная реакция.
2. Взаимодействием металла с кислотой:
Fe + H2SO4 = FeSO4 + H2
Fe + 2H + + SO 2 4 — =Fe 2+ + SO 2 4 — + H2
Fe + 2H + = Fe 2+ + H2
3. Взаимодействием металла с солью:
Сu + 2AgNO3 = Cu(NO3)2 + 2Ag↓
Сu + 2Ag + + 2NO 3 — = Cu 2+ 2NO 3 — + 2Ag↓
Сu + 2Ag + = Cu 2+ + 2Ag
4. Взаимодействием основного окисла с кислотой:
СuО + H2SO4 = CuSO4 + H2O
CuO + 2H + + SO 2 4 — = Cu 2+ + SO 2 4 — + H2O
СuО + 2Н + = Cu 2+ + H2O
5. Взаимодействием основного окисла с ангидридом кислоты:
3CaO + P2O5 = Ca3(PO4)2
Реакция не ионного характера.
6. Взаимодействием кислотного окисла с основанием:
СО2 + Сa(OH)2 = CaCO3 + H2O
CO2 + Ca 2+ + 2OH — = CaCO3 + H2O
7, Взаимодействие кислот с основанием (нейтрализация):
HNO3 + KOH = KNO3 + H2O
H + + NO 3 — + K + + OH — = K + + NO 3 — + H2O
H + + OH — = H2O