Ядра таламуса их роль в сенсорных функциях. Функции таламуса

Каждый таламус (см. рис. 8.1; 8.2) представляет собой яйцевидное образование длиной примерно 4 см. С латеральной стороны таламус граничит с хвостатым ядром (см. параграф 9.2), отделяясь от него конечной полоской {stria terminalis). Медиальные поверхности таламусов образуют боковые стенки верхней части III желудочка. Между этими стенками находится межбугорное сращение (серое вещество), соединяющее правый и левый таламусы. Передний конец таламуса несколько заострен, а задний расширен и утолщен.

Рис. 8.2.

  • 1-7 - проекционные ядра; 8-11 - ассоциативные ядра. 1 - медиальное коленчатое тело (CGM); 2 - латеральное коленчатое тело (CGL); 3-4 - ядра вентробазального комплекса (3 - VPM, 4 - VPL); 5-6 - двигательные ядра (5 - вентролатеральное (VL), 6 - переднее вентральное (VA)); 7 - лимбические ядра (AV, AD, AM);
  • 8 - медиодорсальное ядро (MD); 9 - дорсолатеральное ядро (LD);
  • 10 - постеролатеральное ядро (LP); 11 - подушка (Pul)

Основная масса таламуса представлена серым веществом, сгруппированным в ядра (примерно от 40 до 150 по разным классификациям). Большинство ядер таламуса принято называть аббревиатурами из латинских букв, составленных из латинского названия ядра.

В ядрах таламуса происходит не только переключение информации, но и ее обработка. Одна из основных особенностей этой обработки состоит в избирательном проведении информации в кору больших полушарий. Иными словами, таламус выполняет роль фильтра, пропуская в конечный мозг либо очень значимые (сильные, новые) сигналы, либо сигналы, связанные с текущей деятельностью коры больших полушарий. Таким образом, таламус является одной из ключевых структур, обеспечивающих и поддерживающих процессы внимания. Для многих ядер таламуса, особенно проекционных, характерно присутствие гломерул, что говорит о сложных процессах анализа информации.

Основные классификации таламических ядер связаны или с их расположением, или с их функцией. Серая масса таламуса разделяется медуллярными пластинками (прослойками белого вещества) на несколько ядер- ных групп - переднюю, медиальную, латеральную, заднюю и ядра средней линии (область межбугорного сращения и околожелудочковые отделы).

Классификация ядер таламуса. Более подробно мы рассмотрим классификацию ядер таламуса, основанную на их функциях и организации связей. С этой точки зрения все таламические ядра делят на проекционные, ассоциативные и неспецифические.

Проекционные ядра - это переключательные (релейные) ядра, получающие входы от очень ограниченного количества внеталамических структур. Волокна из этих структур образуют синапсы на нейронах проекционных ядер, а аксоны последних проводят импульсацию в определенные локальные области коры больших полушарий, отвечающие за определенные функции. В свою очередь каждое проекционное ядро получает нисходящие волокна из собственной проекционной корковой зоны. Проекционные ядра подразделяются на сенсорные, двигательные и лимбические.

Сенсорные (чувствительные) ядра обеспечивают быстрое проведение сенсорной афферентации от конкретных сенсорных систем в первичные проекционные зоны коры больших полушарий. Пути от всех рецепторов (за исключением обонятельных) проходят через таламус и имеют там свои представительства. Главными сенсорными ядрами таламуса являются:

  • - латеральное (наружное) коленчатое тело (ЛКТ; corpus geniculatum laterale, CGL), относящееся к задней группе ядер. Это зрительное сенсорное ядро, на котором оканчиваются волокна зрительного тракта и ручек верхних холмиков четверохолмия. Эфференты ЛКТ идут в первичную и вторичную зрительную кору (поля 17 и 18) в затылочной доле, в ассоциативное ядро подушку и в некоторые другие ядра таламуса. ЛКТ состоит из дорсальной и вентральной частей, причем вентральная имеет ядерную организацию, а дорсальная - корковую, она состоит из шести слоев;
  • - медиальное (внутреннее) коленчатое тело (MKT; corpus geniculatum mediate, CGM) также относится к задней группе ядер. Это слуховое сенсорное ядро, на котором оканчиваются волокна латеральной петли и ручек нижних холмиков четверохолмия. Эфференты МКТ идут в первичную и вторичную слуховую кору (поля 41 и 42) в височной доле, к некоторым таламическим ядрам (рис. 9.9). Отмстим, что ЛКТ и МКТ объединяют под названием метаталамус (забугорье);
  • - проекционным ядром систем кожной и мышечной чувствительности является вентробазальный комплекс, или заднее вентральное ядро таламуса. Оно находится в вентролатеральной (нижней боковой) области таламуса. Вентробазальный комплекс состоит из трех ядер - VPL (п. ventralis posterolateralis ), VPM (п. ventralisposteromedialis) и VPI (n. ventralis posterior intermedins). Здесь заканчиваются волокна от нежного и клиновидного ядер продолговатого мозга (медиальный лемниск), спинно-таламические тракты, волокна от чувствительных ядер тройничного нерва и ядра одиночного пути. Аксоны от этих ядер направляются в сенсомоторную кору (поля 1, 2, 3 в постцентральной извилине и 4, б в прецентральной).

Двигательные (моторные) проекционные ядра таламуса тоже расположены в его нижней боковой части перед вентробазальным комплексом, поэтому их часто называют вентролатеральными ядрами. Это два крупных ядра VL (п. ventralis lateralis) и VA (п. ventralis anterior). Афферентами этих ядер являются структуры, связанные с организацией движений, такие как зубчатое ядро мозжечка, бледный шар (ядро конечного мозга), вестибулярные ядра, черная субстанция. Эфференты идут в моторную (поле 4) и премоторную (поле 6) кору.

Для ядер вентробазального комплекса и двигательных ядер характерна сомаготония (топографическое представительство поверхности тела или мышц).

Лимбические ядра часто называют передними ядрами таламуса из-за их расположения. Это ядра AV (п. anteroventralis ), AD (п . anterodorsalis) и AM (п anteromedialis). Они входят в ЛС мозга (см. параграф 9.4) и проводят сенсорную информацию в лимбические отделы коры больших полушарий, главным образом в поясную извилину (рис. 9.5). Основные афференты к этим ядрам приходят от мамиллярных тел гипоталамуса, сюда приходит также часть волокон свода (см. параграф 8.2).

На ассоциативных ядрах таламуса оканчиваются волокна не от одной, а сразу от нескольких сенсорных систем, а также от других ядер таламуса и коры больших полушарий. Это обеспечивает их участие в интегративных функциях головного мозга, т.е. в объединении разных видов чувствительности. Эти ядра посылают свои волокна в ассоциативные зоны коры больших полушарий (см. параграф 9.3). Дорсальные ядра - эволюционно молодые отделы промежуточного мозга. Их формирование идет параллельно развитию высших ассоциативных центров коры.

Ассоциативные ядра LP (п. lateralis posterior ), LD (п. lateralis dorsalis) и Pul (pulvinar , подушка) вместе с зонами их проекций в теменной доле коры больших полушарий рассматривают как таламо-париетальную ассоциативную систему (lobus parietalis , теменная доля коры), функции которой связаны с речью, а также с распознаванием образов и схемы тела. Отдельно надо отметить, что ассоциативное ядро подушка также тесно связано со зрительной системой. Оно получает афференты от ЛКТ, верхних холмиков четверохолмия, зрительной коры, а само посылает волокна в зрительную кору (поля 17, 18, 19). Поэтому подушку называют иногда зрительным ассоциативным ядром.

Медиодорсальнос, или дорсомедиальное, ядро MD {п. medialis dorsalis ) имеет очень много афферентов. Оно получает волокна от сенсорных и неспецифических ядер таламуса, от ядра конечного мозга миндалины, от гипоталамуса, от гиппокампа, от орбитальной и височной коры и др. Характерным для этого ядра является то, что его корковые эфференты идут в лобные ассоциативные зоны коры, что привело к формированию представлений о таламо-фроитальиой ассоциативной системе. Функции этой системы окончательно неясны, но в целом их можно определить как формирование сложных поведенческих актов и контроль эмоциональных состояний.

Неспецифические (медиальные) ядра таламуса обычно рассматриваются как ядра РФ, осуществляющие связь с ретикулярными ядрами ствола. Они получают афференты от большого числа образований и посылают диффузные проекции па обширные области коры, оказывая влияние на уровень ее активации.

К неспецифическим относятся ядра средней линии, расположенные в его внутренней части, например ядро СМ (п . centralis medialis), интраламинарные ядра, лежащие среди волокон медуллярной пластинки (lamina , пластинка). К последним принадлежат, например, крупное ядро - срединный центр , или СеМ (icentrum medianum ), и лежащее медиально от него парафасцикулярное ядро PaF (п. parafascicularis). СеМ и PaF принимают участие в передаче медленных диффузных компонентов болевых ощущений (см. гл. 15).

Неспецифическим является и ретикулярное таламическое ядро Ret ((Rt), п. reticularis thalami ), относящееся к латеральной группе ядер. Это тормозное ядро, ограничивающее активацию остальных таламических ядер.

text_fields

text_fields

arrow_upward

Промежуточный мозг интегри­рует сенсорные, двигательные и вегетативные реакции, необходимые для целостной деятельности организма. Основными образованиями промежуточного мозга являются:

      • таламус,
      • гипоталамус,
      • гипофиз.

Функции таламуса

text_fields

text_fields

arrow_upward

Таламус - структура, в которой происходит обработка и интеграция практически всех сигналов, идущих в кору головного мозга от нейронов спинного мозга, среднего мозга, моз­жечка, базальных ганглиев. Возможность получать информацию о состоянии множества систем организма позволяет ему участвовать в регуляции и определять функциональное состояние организма в целом. Это подтверждается уже тем, что в таламусе около 120 разнофункциональных ядер.

Ядра образуют своеобразные комплексы , которые можно разделить по признаку проекции в кору на три группы:

      • передняя - проецирует аксоны своих нейронов в поясную кору;
      • медиальная - в любую;
      • латеральная - в теменную, височ­ную, затылочную.

По проекциям определяется и функция ядер. Такое деление не абсолютно, так как часть волокон от ядер тала­муса идет в корковые образования, часть - в разные зоны мозга.

Функциональная значимость ядер таламуса определяется не только их проекциями на другие структуры мозга, но и тем, какие струк­туры посылают к нему свою информацию. В таламус приходят сигналы от зрительной, слуховой, вкусовой, кожной, мышечной систем, от ядер черепно-мозговых нервов ствола, мозжечка, блед­ного шара, продолговатого и спинного мозга.

Функционально, по характеру нейронов входящих и выходящих из таламуса, его ядра делят на специфические, неспецифические и ассоциативные.

К специфическим ядрам относят:

      • переднее вентральное, медиаль­ное;
      • вентролатеральное, постлатеральное, постмедиальное;
      • латераль­ное и медиальное коленчатые тела.

Последние относятся, соответ­ственно, к подкорковым центрам зрения и слуха.

Основной функциональной единицей специфических таламических ядер являются «релейные» нейроны, которые имеют мало дендритов, длинный аксон и выполняют переключательную функцию - здесь происходит переключение путей, идущих в кору от кожной, мышеч­ной и других видов чувствительности.

От специфических ядер информация о характере сенсорных сти­мулов поступает в строго определенные участки 3-4 слоев коры (соматотопическая локализация). Нарушение функции специфических ядер приводит к выпадению конкретных видов чувствительности. Это связано также с тем, что сами ядра таламуса имеют (так же, как и кора) соматотопическую локализацию. Отдельные нейроны специфических ядер таламуса возбуждаются афферентациеи, посту­пающей только от своего типа рецепторов. К специфическим ядрам таламуса идут сигналы от рецепторов кожи, глаз, уха, мышечной системы. Сюда же конвергируют сигналы от интероцепторов зон проекции блуждающего и чревного нервов, от гипоталамуса.

Ассоциативные ядра - медиодорсальные, латеральные, дорсальные и подушка таламуса. Основные клеточные структуры этих ядер: мультиполярные, биполярные, трехотростчатые нейроны, т.е. нейро­ны, способные выполнять полисенсорные функции. Наличие поли­сенсорных нейронов способствует взаимодействию на них возбужде­ний разных модальностей и созданию интегрированного сигнала для передачи в ассоциативную кору мозга. Аксоны от нейронов ассоци­ативных ядер таламуса идут 1 и 2 слоями ассоциативных и частично проекционных областей, по пути отдавая коллатерали в 4 и 5 слои коры, образуя аксосоматические контакты с пирамидными нейрона­ми.

Неспецифические ядра таламуса представлены срединным центром, парацентральным ядром, центральным медиальным и латеральным, субмедиальным, вентральным передним, парафасцикулярным ком­плексом, ретикулярным ядром, перивентрикулярной и центральной серой массой. Нейроны этих ядер образуют связи по ретикулярному типу. Их аксоны поднимаются в кору и контактируют со всеми слоями коры, образуя не локальные, а диффузные связи. К неспе­цифическим ядрам поступают связи из ретикулярной формации ствола мозга, гипоталамуса, лимбической системы, базальных ган­глиев, специфических ядер таламуса.

Возбуждение неспецифических ядер вызывает генерацию в коре специфической веретенообразной электрической активности, свиде­тельствующей о развитии сонного состояния. Нарушение функций неспецифических ядер затрудняет появление веретенообразной ак­тивности, т.е. развитие сонного состояния.

Сложное строение таламуса, наличие здесь взаимосвязанных спе­цифических, неспецифических и ассоциативных ядер, позволяет ему организовывать такие двигательные реакции, как сосание, жевание, глотание, смех. Двигательные реакции интегрируются в таламусе с вегетативными процессами, обеспечивающими эти движения.

Функции гипоталамуса

text_fields

text_fields

arrow_upward

Гипоталамус (подбугорье) - структура промежуточного мозга, организующая эмоциональные, поведенчес­кие, гомеостатические реакции организма.

Функционально ядра гипоталамуса делят на переднюю, среднюю и заднюю группы ядер. Окончательно созревает гипоталамус к 13-14 годам, когда заканчивается формирование гипоталамо-гипофизарных нейросекреторных связей. Мощные афферентные связи гипоталамуса с обонятельным мозгом, базальными ганглиями, таламусом, гиппокампом, орбитальной, височной и теменной корой определяют его ин­формативность о состоянии практически всех структур мозга. В то же время гипоталамус посылает информацию к таламусу, ретикулярной формации, вегетативным центрам ствола и спинного мозга.

Нейроны гипоталамуса имеют особенности, которые определяют специфику функций самого гипоталамуса. К этим особенностям относятся: чувствительность нейронов к составу омывающей их кро­ви, отсутствие гематоэнцефалического барьера между нейронами и кровью, способность нейронов к нейросекреиии пептидов, нейромедиаторов и др.

Влияние на симпатическую и парасимпатическую регуляцию по­зволяет гипоталамусу воздействовать на вегетативные функции ор­ганизма гуморальным и нервным путями.

Возбуждение ядер передней группы гипоталамуса приводит к ре­акции организма, его систем по парасимпатическому типу, т.е. ре­акциям, направленным на восстановление и сохранение резервов организма.

Возбуждение ядер задней группы вызывает симпатические эффекты в работе органов:

      • происходит расширение зрачков,
      • повы­шается кровяное давление,
      • учащается ритм сердечных сокращений,
      • тормозится перистальтика желудка и т.д.

Стимуляция ядер средней группы гипоталамуса приводит к снижению влияний симпатической системы. Указанное распределение функций гипоталамуса не абсо­лютно: все структуры гипоталамуса способны, но в разной степени, вызывать симпатические и парасимпатические эффекты. Следова­тельно, между структурами гипоталамуса существуют функциональ­ные взаимодополняющие, взаимокомпенсируюшие отношения.

В целом, за счет большого количества входных и выходных свя­зей, полифункциональности структур, гипоталамус выполняет ин­тегрирующую функцию вегетативной, соматической и эндокринной регуляции, что проявляется и в организации его ядрами ряда кон­кретных функций.

Так, в гипоталамусе располагаются центры :

      • гомеостаза,
      • теплорегуляции,
      • голода и насыщения,
      • жажды и ее удовле­ творения,
      • полового поведения,
      • страха, ярости,
      • регуляции цикла «бодрствование-сон».

Все эти центры реализуют свои функции путем активации или торможения вегетативной нервной системы, эндо­кринной системы, структур ствола и переднего мозга.

Нейроны передней группы ядер гипоталамуса продуцируют так называемые рилизинг-факторы (либерины) и ингибируюшие факто­ры (статины), которые регулируют активность передней доли гипо­физа - аденогипофиз.

Нейроны срединной группы ядер гипоталамуса обладают детекти­рующей функцией, они реагируют на изменение температуры крови, электромагнитный состав и осмотическое давление плазмы, количе­ство и состав гормонов крови.

Терморегуляция со стороны гипоталамуса проявляется в изменении теплопродукции или теплоотдачи организмом. Возбуждение задних ядер сопровождается усилением обменных процессов, увеличением частоты сердечных сокращений, дрожанием мышц туловища, что приводит к росту теплопродукции в организме.

Раздражение перед­ них ядер гипоталамуса

      • расширяет сосуды,
      • усиливает дыхание, пото­отделение - т.е. организм активно теряет тепло.

Пищевое поведение в форме поиска пищи, слюноотделения, уси­ления кровообращения и моторики кишечника наблюдается при стимуляции ядер заднего гипоталамуса. Повреждение других ядер вызывает голодание (афагия) или чрезмерное потребление пищи (гиперфагия), и, как следствие - ожирение.

В гипоталамусе расположен центр насыщения, чувствительный к составу крови - по мере поедания пищи и ее усвоения, нейроны этого центра тормозят активность нейронов центра голода.

Исследования во время хирургических операций показали, что у человека раздражение ядер гипоталамуса вызывает эйфорию, эроти­ческие переживания. В клинике отмечено также, что патологические процессы в области гипоталамуса сопровождаются ускорением поло­вого созревания, нарушением менструального цикла, половой спо­собности.

    • адренокортикотропный гормон - АКТГ, который стимулирует работу же­лез надпочечников;
    • тиреотропный гормон - стимулирует рост и секрецию щитовидной железы;
    • гонадотропный гормон - регулирует активность половых желез;
    • соматотропный гормон - обеспечивает развитие костной системы; пролактин - стимулирует рост и актив­ность молочных желез и др.
  • В гипоталамусе и гипофизе образуются также нейрорегуляторные энкефалины, эндорфины, обладающие морфиноподобным действием и способствующие снижению стресса.

    Чтобы иметь представление о том, что такое таламус и гипоталамус, необходимо сначала разобраться в том, что такое промежуточный мозг. Находится этот участок мозга под так называемым мозолистым телом, чуть выше среднего мозга.

    Он включает в себя метаталамус, гипоталамус и таламус. Функции промежуточного мозга очень обширные – он интегрирует двигательные, сенсорные и вегетативные реакции, которые крайне важны для нормальной деятельности человека. Свое развитие промежуточный мозг ведет из переднего мозгового пузыря, при этом его стенки образуют третий желудочек мозговой структуры.

    Таламус – это вещество, которое составляет основную массу промежуточного мозга. Функции его заключаются в получении и передаче коре мозга и ЦНС практически всех импульсов, за исключением обонятельных.

    Таламус имеет две симметричные части, и является частью лимбической системы. Расположена эта структура в переднем мозге, рядом с центром голов направлениях.

    Функции таламуса осуществляются посредством ядер, которых у него 120. Эти ядра собственно и отвечают за прием и отправку сигналов и импульсов.

    Нейроны, которые отходят от таламуса разделяются следующим образом:

    1. Специфические – передают информацию, полученную от глазной, слуховой, мышечной и прочих чувствительных зон.
    2. Неспецифические – в основном отвечают за сон человека, поэтому, если происходит повреждение этих нейронов, человек будет все время хотеть спать.
    3. Ассоциативные – регулируют возбуждение модальности.

    Исходя из выше сказанного, можно сказать, что таламус регулирует различные процессы, происходящие в организме человека, а также отвечает за получение сигналов о том в каком состоянии находится чувство равновесия.

    Если говорить о регулировании сна, то при нарушении функциональности некоторых нейронов таламуса, у человека может развиться настолько стойкая бессонница, что он может даже умереть от этого.

    Заболевания таламуса

    При поражении зрительного бугра развивается таламический синдром, симптоматика при этом может быть очень разнообразной, поскольку зависит от того какую именно функцию выполняли ядра, которые утратили вою функциональность. Причиной развития таламического синдрома является функциональное расстройство сосудов задней мозговой артерии. При этом может наблюдаться:

    • нарушение чувствительности лица;
    • болевой синдром, который охватывает одну половину тела;
    • отсутствие вибрационной чувствительности;
    • парез;
    • в пострадавшей половине тела наблюдается мышечная атрофия;
    • симптом так называемой таламической руки – определенное положение фаланг пальцев и непосредственно самой кисти,
    • расстройство внимания.

    Гипоталамус мозга

    Строение гипоталамуса очень сложное, поэтому в этой статье будут рассмотрены только его функции. Они заключаются в поведенческих ответных реакциях человека, а также во влиянии на вегетатику. Помимо этого, гипоталамус активно принимает участие в регенерации резервов.

    Гипоталамус тоже имеет множество ядер, которые делятся на задние, средние и передние. Ядра задней категории регулируют симпатические реакции организма – повышение давление, учащенный пульс, расширение зрачка глаза. Ядра средней категории наоборот, снижают симпатические проявления.

    Гипоталамус отвечает за:

    • терморегуляцию;
    • чувство насыщения и голода;
    • страх;
    • половое влечение и так далее.

    Все эти процессы происходят в результате активации или торможения различных ядер.

    К примеру, если у человека расширяются сосуды, и ему становится холодно, значит произошло раздражение передней группы ядер, а если повреждаются ядра заднего порядка, то это может спровоцировать летаргический сон.

    Гипоталамус отвечает за регуляцию движений, если в этой области происходит возбуждение, человек может совершать хаотические движения. Если нарушения происходят в так называемом сером бугре, который тоже входит в состав гипоталамуса, то человек начинает страдать от нарушения обменных процессов.

    Патологии гипоталамуса

    Все недуги гипоталамуса связаны с нарушением функции этой структуры, а точнее с особенностями гормонального синтеза. Заболевания могут возникнуть по причине избыточного продуцирования гормонов, по причине сниженной секреции гормонов, но также недуги могут появиться при нормальной выработке гормонов гипоталамуса. Существует очень тесная связь между гипоталамусом и гипофизом – у них общее кровообращение, похожее анатомическое строение и идентичные функции. Поэтому часто заболевания объединяют в одну группу, которую именуют патологиями гипоталамо-гипофизарной системы.

    Нередко причиной возникновения патологической симптоматики является возникновение аденомы гипофиза или самого гипоталамуса. В этом случае гипоталамус начинает продуцировать большое количество гормонов, в результате чего и появляется соответствующая симптоматика.

    Типичным поражение гипоталамуса являет пролактинома – опухоль, которая является гормонально активной, так как вырабатывает пролактин.

    Еще одним опасным заболеванием является гипоталамо-гипофизарный синдром, этот недуг связан с нарушением функциональности как гипофиза, так и гипоталамуса, что приводит к развитию характерной клинической картины.

    В связи с тем, что заболеваний, поражающих гипоталамо-гипофизарную систему много, ниже будут приведены общие симптомы, по которым можно заподозрить патологии этого отдела головного мозга:

    1. Проблемы с насыщением организма. Ситуация может развиваться в двух направлениях – либо человек полностью теряет аппетит, либо не чувствует насыщения сколько бы не съел.
    2. Проблемы с терморегуляцией. Проявляется это в повышении температуры, при этом никаких воспалительных процессов в организме не наблюдается. Кроме того, повышение температурных показателей сопровождается ознобом, повышенным потоотделением, повышенной жаждой, ожирением и неконтролируемым голодом.
    3. Эпилепсия по гипоталамическому признаку – перебои в работе сердца, повышенное артериальное давление, болевые ощущения в эпигастральной области. При приступе человек теряет сознание.
    4. Изменения в работе вегетососудистой системе. Они проявляются в работе пищеварения (отрыжка, боли в животе, срывы стула), в работе системы дыхания (тахипноэ, затрудненный вдох, удушье) и в работе сердца и сосудов (сбои в сердечном ритме, высокое или низкое артериальное давление, загрудинные боли).

    Лечением заболеваний гипоталамуса занимаются неврологи, эндокринологи и гинекологи.

    Заключение и выводы

    1. Поскольку гипоталамус регулирует дневные и ночные ритмы человека, важно соблюдать режим дня.
    2. Необходимо улучшать кровообращение и насыщать кислородом все отделы мозга. Недопустимо курение и употребление спиртосодержащих напитков. Рекомендованы прогулки на свежем воздухе и спортивные занятия.
    3. Важно привести в норму синтез гормонов.
    4. Рекомендуется насыщать организм всеми необходимыми витаминами и минералами.

    Нарушение работы таламуса и гипоталамуса приводит к различным заболеваниям, большинство из которых заканчиваются печально, поэтому необходимо очень внимательно относиться к своему здоровью и при первых же недомоганиях обращаться к специалистам за консультацией.

    Таламус. Морфофункциональная организация. Функции

    Таламус, или зрительный бугор, является составной частью промежуточного мозга. Он занимает центральное место между большими полушариями. Особая локализация таламуса, его теснейшие связи с корой больших полушарий головного мозга и афферентными системами обусловливают особую функциональную роль этого образования. Как отмечал Уолкер (1964), «… в таламусе, этой огромной нейронной массе, лежит ключ к тайнам церебральной коры…».

    Таламус представляет собой массивное парное образование, имеющее яйцевиднуюформу, длинная ось которого ориентированав дорсовентральномнаправлении. Медиальная поверхность таламуса образует стенку III желудочка, верхняя является дном бокового желудочка, наружная прилегает к внутренней капсуле, а нижняя переходит в гипоталамическую область. Таламус является ядерным образованием. В нем различают до 40 пар ядер. В настоящее время существует множество делений ядер таламуса на группы, в основе которых лежат различные принципы. Согласно Уолкеру (1966), а также Смирнову (1972), по топографическому признаку все ядра делят на 6 групп.

    1. Передняя группа ядер включает ядра, составляющие передний бугор таламуса: переднее дорсальное (n. AD), переднее вентральное (n. AV), переднее медиальное (n. AM) и др.

    2. Группа ядер средней линии включает в себя центральное медиальное (n. Cm), паравентрикулярное (n. Pv), ромбовидное (n. Rb) ядра, центральное серое вещество (Gc) и др.

    3. Медиальная и интраламинарная группа содержит медиодорсальное (n. MD), центральное латеральное (n. CL), парацентральное (n. Pc) и другие ядра.

    4. Вентролатеральная ядерная группа состоит из вентрального и латерального отделов. Вентральный отдел содержит вентральное переднее (n. VA), вентральное латеральное (n. VL) и вентральное заднее (n. VP) ядра. Латеральный отдел состоит из латерального дорсального (n. LD) и латерального заднего (n. LP) ядер. Здесь же находится ретикулярное ядро таламуса (n. R), ему принадлежит особое место в реализации функций таламуса.

    5. Задняя группа ядер –подушечное ядро (PuCV), наружное и внутреннее коленчатые тела (n. GL, n. GM) и т.д.

    6. Претектальная ядерная группа (иногда ее относят к задней группе ядер) содержит претектальное ядро (n. Prt), заднее ядро (n. P), претектальную зону и ядра задней спайки.

    С функциональной точки зрения все ядра таламуса подразделяют на 3 группы:

    1 группа – специфические (релейные) ядра (сенсорные и несенсорные);

    2 группа – неспецифические ядра;

    3 группа – ассоциативные ядра.

    Специфические ядра имеют отчетливую топографическую и функциональную разграниченность проекций к определенным областям коры больших полушарий. Специфические ядра называют также релейными, переключающими. Специфические ядра делят на сенсорные релейные и несенсорные релейные. Несенсорные релейные ядра, в свою очередь, делятся на моторные ядра и переднюю группу. Отдельные морфологи переднюю группу и ряд неспецифических ядер называют лимбическими ядрами таламуса, учитывая их проекции на лимбическую кору. Например, специфические несенсорные ядра – переднее дорсальное, переднее медиальное и переднее вентральное – проецируются на различные поля поясной извилины. Релейные ядра таламуса получают афференты от лемнисковых систем (спинальной, тригемиальной, слуховой и зрительной), от некоторых структур головного мозга (вентральное переднее ядро таламуса, мозжечок, гипоталамус, полосатое тело) и имеют прямой выход в кору головного мозга (проекционные области, моторная и лимбическая кора).

    Каждое релейное ядро получает нисходящие волокна из собственной кортикальной проекционной зоны. Тем самым создается морфологическая основа для функциональных связей между таламическим ядром и его корковой проекцией в виде замкнутых нейронных кругов циркулирующего возбуждения, посредством которых осуществляются их взаимно регулирующие отношения.

    Нейронные поля релейных ядер таламуса содержат: 1) таламокортикальные релейные нейроны, аксоны которых идут в III и IV слоя коры;
    2) длинноаксонные интегративные нейроны, аксоны которых дают коллатерали в ретикулярную формацию среднего мозга и другие ядра таламуса;
    3) короткоаксонные нейроны, аксоны которых не выходят за пределы таламуса. Значительная часть нейронов релейных ядер отвечает только за стимуляцию определенной модальности, но имеются также и мультисенсорные нейроны. Релейным ядром для импульсации, несущей зрительную информацию, является наружное коленчатое тело, проецирующееся на зрительную кору (поля 17, 18, 19). Слуховые импульсы переключаются во внутреннем коленчатом теле. Проекционной корковой зоной являются поля 41, 42 и поперечная извилина Гешля. Вентральное переднее ядро таламуса (n. VA) получает обильную афферентацию из базальных ганглиев. Это ядро посылает прямые афференты к коре лобной области, оперкулуму и островку. Через это ядро проходят без переключения волокна от дорсомедиального ядра к лобной коре и к ретикулярному таламическому ядру. Благодаря вентральному переднему ядру хвостатое ядро проецируется на кору. Вентролатеральное ядро (n. VL) некоторыми авторами относится к одному из центров, который регулирует моторную активность и оказывает значительное влияние на активность пирамидных нейронов. Это ядро получает основные афференты по таламическому пучку лентикулярной петли, который начинается от нейронов внутреннего членика бледного шара. Другая часть афферентов приходит из красного и зубчатого ядер мозжечка. Из зубчатого ядра выходят прямые волокна, которые проходят красное ядро, а затем переключаются на нейроны рубро-таламического ядра и направляются в вентролатеральное ядро. Большое количество волокон к этому ядру приходит из ядра Кахала, расположенного в ретикулярной формации ствола мозга.

    Неспецифические ядра образуют диффузную таламическую систему, филогенетически древнюю часть таламуса и представлены преимущественно интраламинарной группой и ядрами средней линии. Они получают афференты из филогенетически древней экстралемнисковой системы и спинного мозга, бульбарных отделов ретикулярной формации и, за некоторым исключением, не имеют прямого выхода к коре больших полушарий головного мозга. Выход к коре мозга осуществляется через оральный полюс ретикулярного ядра таламуса, который формирует диффузные связи с корой мозга. На нейронах этой группы ядер оканчивается некоторое количество волокон, составляющих основные каналы специфической афферентации, но главным является то, что они не связаны с проведением возбуждения какой-либо одной модальности и не имеют четких проекций в коре. Данная группа ядер выполняет модулирующие функции.

    Ассоциативные ядра таламуса имеют, как правило, ограниченный афферентный вход из периферии, их афференты берут начало в других ядрах таламуса. Между ассоциативными ядрами таламуса и ассоциативными полями коры головного мозга, в особенности у высокоорганизованных млекопитающих, устанавливается мощная система связей. К ассоциативным ядрам поступает разнообразная афферентация от специфических и неспецифических ядер таламуса. Поэтому можно предполагать возможность осуществления здесь более сложных интегративных процессов, чем в других ядрах таламуса. Деление ядер на специфические, неспецифические и ассоциативные в какой-то мере условное.

    Эфферентные волокна ассоциативных ядер направляются непосредственно в ассоциативные поля коры больших полушарий, где эти волокна, отдавая по пути коллатерали в IV и V слои коры, идут ко II и I слоям, вступая в контакт с пирамидными нейронами посредством аксо-дендри-
    тических синапсов. Импульсы, возникающие в связи с раздражением рецепторов, вначале достигают релейных сенсорных и неспецифических ядер таламуса, где они переключаются на нейроны ассоциативных ядер таламуса, а после определенной организации и интеграции с потоками других импульсаций направляются в ассоциативные области коры. Многочисленные афферентные и эфферентные связи, а также полисенсорность нейронов ассоциативных ядер лежат в основе их интегративной функции. Ассоциативные ядра обеспечивают взаимодействие как таламических ядер, так и различных корковых полей и в определенной степени (учитывая межполушарные связи ассоциативных нейронов) совместную работу больших полушарий мозга. Ассоциативные ядра проецируются не только на ассоциативные области коры, но и на специфические проекционные поля. В свою очередь, кора головного мозга посылает волокна к ассоциативным таламическим ядрам, осуществляя регуляцию их деятельности. Наличие двусторонних связей дорсомедиального ядра с фронтальной корой, подушкой и латеральных ядер с теменной областью коры, а также существование связей ассоциативных ядер с таламическим и кортикальным уровнем специфических афферентных систем дало возможность А.С. Батуеву (1981) развить положение о наличии в составе целостного мозга таламофронтальной и таламотеменной ассоциативных систем, участвующих в формировании различных этапов эфферентного синтеза.

    Подушка (pulvinar) является самым крупным таламическим образованием у человека. Главные афференты поступают в нее из коленчатых тел, неспецифических ядер и других таламических ядер. Кортикальная проекция от подушки идет к височно-теменно-затылочным областям новой коры, играющим важную роль в гностических и речевых функциях. При деструкции подушки, связанной с теменной корой, появляются нарушения «схемы тела». Разрушение некоторых отделов подушки могут устранять тяжелые боли.

    В дорсомедиальное ядро (n. MD) таламуса афферентация поступает из таламических ядер, ростральных отделов ствола, гипоталамуса, миндалины, перегородки, свода, базальных ганглиев и префронтальной коры. Эти ядра проецируются на лобную ассоциативную и лимбическую кору. При двусторонних разрушениях дорсомедиальных ядер наблюдаются преходящие расстройства психической деятельности. Дорсомедиальное ядро рассматривают как таламический центр для лобных и лимбических отделов коры, участвующих в системных механизмах сложных поведенческих реакций, включая эмоциональные и мнестические процессы.

    Функции таламуса. Таламус является интегративной структурой центральной нервной системы. В таламусе существует многоуровневая система интегративных процессов, которая не только обеспечивает проведение афферентной импульсации к коре головного мозга, но и выполняет множество других функций, позволяющих осуществлять координированные, хотя и простые реакции организма, проявляющиеся даже у таламических животных. Важно то, что основную роль во всех формах интегративных процессов в таламусе играет процесс торможения.

    Интегративные процессы таламуса носят многоуровневый характер.

    Первый уровень интеграции в таламусе осуществляется в гломерулах. Основу гломерулы составляет дендрит релейного нейрона и пресинаптические отростки нескольких типов: терминали восходящих афферентных и кортико-таламических волокон, а также аксонов интернейронов (клетки типа Гольджи П). Направленность синаптической передачи в гломерулах подчинена строгим закономерностям. В ограниченной группе синаптических образований гломерулы возможно столкновение разнородных афферентаций. Несколько гломерул, расположенных на соседних нейронах, могут взаимодействовать друг с другом благодаря малым безаксонным элементам, у которых розетки терминалей дендритов одной клетки входят в состав нескольких гломерул. Полагают, что объединение нейронов в ансамбли с помощью таких безаксонных элементов или с помощью дендро-дендритических синапсов, которые обнаружены в таламусе, может быть основой для поддержания синхронизации в ограниченной популяции таламических нейронов.

    Вторым, более сложным, интернуклеарным уровнем интеграции является объединение значительной группы нейронов таламического ядра с помощью собственных (внутриядерных) тормозных интернейронов. Каждый тормозный вставочный нейрон устанавливает тормозные контакты со множеством релейных нейронов. В абсолютном выражении число интернейронов к числу релейных клеток составляет 1:3 (4), но за счет перекрытия взаимных тормозных интернейронов создаются такие соотношения, когда один интернейрон бывает связан с десятками и даже сотнями релейных нейронов. Всякое возбуждение такого вставочного нейрона приводит к торможению значительной группы релейных нейронов, в результате чего их деятельность синхронизируется. На этом уровне интеграции большое значение придается торможению, которое обеспечивает контроль афферентного входа в ядро и которое, вероятно, наиболее представлено в релейных ядрах.

    Третий уровень интегративных процессов, происходящих в таламусе без участия коры головного мозга, представлен интраталамическим уровнем интеграции. Решающую роль в этих процессах играют ретикулярное ядро (n. R) и вентральное переднее ядро (n. VA) таламуса, предполагается участие и других неспецифических ядер таламуса. В основе интраталамической интеграции лежат также процессы торможения, осуществляющиеся за счет длинных аксональных систем, тела нейронов которых находятся в ретикулярном ядре и, возможно, в других неспецифических ядрах. Большинство аксонов таламокортикальных нейронов релейных ядер таламуса проходит через нейропиль ретикулярного ядра таламуса (охватывающего таламус почти со всех сторон), отдавая в него коллатерали. Предполагается, что нейроны n. R осуществляют возвратное торможение таламокортикальных нейронов релейных ядер таламуса.

    Кроме контроля таламокортикального проведения, интрануклеарные и интраталамические интегративные процессы могут иметь важное значение для определенных специфических ядер таламуса. Так, интрануклеарные тормозные механизмы могут обеспечить дискриминативные процессы, усиливая контраст между возбужденными и интактными участками рецептивного поля. Предполагается участие ретикулярного ядра таламуса в обеспечении фокусированного внимания. Это ядро благодаря широкоразветвленной сети своих аксонов может затормаживать нейроны тех релейных ядер, к которым в данный момент не адресуется афферентный сигнал.

    Четвертый, наивысший уровень интеграции, в котором принимают участие ядра таламуса, – это таламокортикальный. Кортико-фугальная импульсация играет важнейшую роль в деятельности ядер таламуса, контролируя проведение и многие другие функции, начиная с деятельности синаптических гломерул и заканчивая системами нейронных популяций. Влияние кортико-фугальной импульсации на деятельность нейронов ядер таламуса носит фазный характер: вначале на короткий промежуток наблюдается облегчение таламокортикального проведения (в среднем до 20 мс), а затем на относительно длинный период (в среднем до 150 мс) происходит торможение. Допускается и тоническое влияние кортико-фугальной импульсации. За счет связей нейронов таламуса с различными областями коры головного мозга и обратных связей устанавливается сложная система таламокортикальных взаимоотношений.

    Таламус, реализуя свою интегративную функцию, принимает участие в следующих процессах:

    1. Все сенсорные сигналы, кроме возникающих в обонятельной сенсорной системе, достигают коры через ядра таламуса и там осознаются.

    2. Таламус является одним из источников ритмической активности в коре мозга.

    3. Таламус принимает участие в процессах цикла сон – бодрствование.

    4. Таламус является центром болевой чувствительности.

    5. Таламус принимает участие в организации различных типов поведения, в процессах памяти, в организации эмоций и т.д.

    Как и любой другой орган мозга, таламус имеет крайне важную и незаменимую функцию для организма. Трудно представить, но этот сравнительно маленький орган несет ответственность за все психические функции: восприятие и понимание, память и мышление, ведь благодаря ему мы видим, понимаем, ощущаем мир и воспринимаем все, что нас окружает. Благодаря его работе мы ориентируемся в пространстве и во времени, чувствуем боль, этот «коллектор чувствительности» воспринимаем и перерабатывает информацию, полученную от всех рецепторов, кроме обоняния и передает необходимый сигнал в нужный отдел коры головного мозга. В итоге организм дает правильную реакцию, проявляет правильные модели поведения на соответствующий раздражитель или сигнал.

    Общие сведения

    Промежуточный мозг расположен под мозолистым телом и состоит из: таламуса (таламического мозга) и гипоталамуса.

    Таламус (он же: зрительный бугор, коллектор чувствительности, информатор организма) – это отдел промежуточного мозга, находящийся в его верхней части, над стволом мозга. Сюда стекаются сенсорные сигналы, импульсы из самых разных частей организма и от всех рецепторов (кроме обоняния). Тут они перерабатываются, орган оценивает, насколько важны приходящие импульсы для человека и отправляет информацию дальше в ЦНС (центральная нервная система) или к коре головного мозга. Этот кропотливый и жизненно важный процесс происходит благодаря составляющим таламуса – 120 разнофункциональным ядрам, которые несут ответственность за принятие сигналов, импульсов и за отправку переработанной информации в соответствующий .

    Благодаря сложной структуре, «зрительный бугор» способен не только принимать и перерабатывать сигналы, но и анализировать их.

    Готовая информация о состоянии организма и его проблемах поступает к коре головного мозга, которая, в свою очередь, разрабатывает стратегию решения и устранения проблемы, стратегию дальнейших действий и поведения.

    Строение

    Таламус - парное яйцевидное образование, состоящее из нервных клеток, которые объединяются в ядра, благодаря которым и происходит восприятия и обработка сигналов и импульсов, идущих от разных органов чувств. Таламус занимает основную часть промежуточного мозга (приблизительно 80%). Состоит из 120 разнофункциональных ядер серого вещества. По форме он напоминает небольшое куриное яйцо.

    Исходя из строения и расположения отдельных частей, таламический мозг можно разделить на: метаталамус, эпиталамус и субталамус.

    Метаталамус (подкорковый слуховой и зрительный центр) - состоит из медиальных и латеральных коленчатых тел. В ядро медиального коленчатого тела заканчивается слуховая петля, а в латеральную – зрительные тракты.

    Медиальные коленчатые тела составляют слуховой центр. В медиальной части метаталамуса из подкоркового слухового центра аксоны клеток направляются к корковому концу слухового анализатора (верхняя височная извилина). Дисфункция этой части метаталамуса может привести к снижению слуха или к глухоте.

    Латеральные коленчатые тела составляют подкорковый зрительный центр. Тут заканчиваются зрительные тракты. Аксоны клеток, формируют зрительную лучистость, по которой зрительные импульсы достигают коркового конца зрительного анализатора (затылочная доля). Дисфункция этого центра может привести к проблемам со зрением, а серьезные поражения – к слепоте.

    Эпиталамус (надталамус) – верхняя задняя часть таламуса, которая возвышается над ним: включает эпифиз, который является надмозговой железой внутренней секреции (шишковидное тело). Эпифиз находится в подвешенном состоянии, так как расположен на поводках. Он отвечает за выработку гормонов: днем он вырабатывает гормон серотонин (гормон радости), а ночью – мелатонин (регулятор режима дня и гормон ответственный за цвет кожи и глаз). Эпиталамус играет роль в регуляции жизненных циклов, регулирует период наступления полового созревания, режимы сна и бодрствования, тормозит процессы старения.

    Поражения эпиталамуса приводят к нарушению жизненных циклов, в том числе к бессоннице, а также к половым дисфункциям.

    Субталамус (подталамус) или преталамус является мозговым веществом маленького объема. Состоит в основном из субталамического ядра и имеет соединения с бледным шаром. Субталамус контролирует мышечные ответы и отвечает за выбор действия. Поражение субталамуса приводят к двигательным нарушениям, тремору, параличу.

    Кроме всего перечисленного, таламус имеет связи со спинным мозгом, с гипоталамусом, подкорковыми ядрами и, естественно, с корой головного мозга.

    Каждый отдел этого уникального органа несет определенную функцию и отвечает за жизненно важные процессы, без которых нормальное функционирование организма невозможно.

    Функции таламуса

    «Коллектор чувствительности» получает, фильтрует, перерабатывает, интегрирует и направляет в мозг информацию, которая поступает от всех рецепторов (кроме обоняния). Можно сказать, что в его центрах происходит формирование восприятия, ощущения, понимания, после чего обработанная информация или сигнал поступают в кору больших полушарий.

    Главными функциями органа являются:

    • переработка информации получаемой от всех органов (рецепторы зрения, слуха, вкуса и осязания) чувств (кроме обоняния);
    • управление эмоциональными реакциями;
    • регулирование непроизвольной двигательной активности и мышечного тонуса;
    • поддерживание определенного уровня активности и возбудимости головного мозга, что необходимо для восприятия информации, сигналов, импульсов и раздражений исходящих извне, из окружающей среды;
    • отвечает за интенсивность и чувство боли.

    Как мы уже говорили, каждая доля таламуса состоит из 120 ядер, которые исходя из функциональности, можно разделить на 4 основные группы:

    • латеральную (боковые);
    • медиальную (срединные);
    • ассоциативную.

    Ретикулярная группа ядер (отвечает за равновесие) – отвечает за обеспечение равновесия при ходьбе и баланса в организме.

    Латеральная группа (центр зрения) – отвечает за зрительное восприятие, принимает и передает импульсы в теменную, затылочную часть коры головного мозга – зрительной зоне.

    Медиальная группа (центр слуха) - отвечает за слуховое восприятие, принимает и передает импульсы в височную часть коры — слуховой зоне.

    Ассоциативная группа (тактильные ощущения) - принимает и передает в кору головного мозга тактильную информацию, то есть сигналы, исходящие от рецепторов кожных покровов и слизистых оболочек: болевые ощущения, зуд, удар, прикосновение, раздражение и т.д.

    Также, с функциональной точки зрения, ядра можно разделить на: специфические и неспецифические.

    К специфическим ядрам поступают сигналы от всех рецепторов (кроме обоняния). Они обеспечивают эмоциональную реакцию человека и отвечают за возникновение болевых ощущений.

    Специфические ядра, в свою очередь, бывают:

    • внешние - получают импульсы от соответствующих рецепторов и отправляют информацию в конкретные зоны коры. Благодаря этим импульсам возникают чувства и ощущения;
    • внутренние - не имеют прямых связей с рецепторами. Получают информацию уже переработанной со стороны релейных ядер. От них импульсы идут в кору головного мозга в ассоциативные зоны. Благодаря этим импульсам возникают примитивные ощущения и обеспечивается взаимосвязь между сенсорными зонами и корой больших полушарий.

    Неспецифические ядра поддерживают общую активность коры головного мозга, посылая неконкретные импульсы и стимулируя мозговую активность. Не имея прямой связи с корой, неспецифические ядра таламуса передают свои сигналы в подкорковые структуры.

    Отдельно о зрительном бугре

    Ранее считалось, что таламус обрабатывает только зрительные импульсы, тогда орган и получил название — зрительные бугры. Сейчас это название считается устаревшим, так как орган обрабатывает практически весь спектр афферентных систем (кроме обоняния).

    Система, которая обеспечивает зрительное восприятие – одна из самых интересных. Основной внешний орган зрения – глаз – рецептор, который имеет сетчатку и оснащен особенными клетками (колбочки, палочки), которые трансформируют световой пучок и электрический сигнал. Электрический сигнал, в свою очередь, проходя по нервным клеткам, попадает в латеральный центр таламуса, который отправляет обработанный сигнал в центральный отдел коры головного мозга. Тут происходит окончательный анализ сигнала, благодаря чему формируется увиденное, то есть – картинка.

    Чем опасны дисфункции зон таламуса

    У таламуса сложная и налаженная структура, поэтому, если возникают сбои или проблемы в работе даже отдельно взятой зоны органа – это приводит к разным последствиям, влияя на отдельные функции организма и даже на весь организм в целом.

    Прежде чем попасть в соответствующий центр коры, сигналы с рецепторов поступают в таламус, а точнее, в его определенную часть. Если определенные ядра таламуса повреждены, то импульс не обрабатывается, не доходит до коры или доходит в необработанной форме, следовательно, кора головного мозга и весь организм не получают нужную информацию.

    Клинические проявления дисфункций таламуса зависят от конкретной зоны поражения и могут проявляться: проблемами с памятью, вниманием, пониманием, потерей ориентации в пространстве и во времени, нарушениями двигательной системы, проблемами со зрением, слухом, бессонницей, психическими расстройствами.

    Одним из проявлений дисфункций органа может быть специфическая амнезия, которая ведет к частичной потере памяти. В этом случае, человек забывает события, произошедшие после повреждения или поражения соответствующей зоны органа.

    Еще одно редкое заболевание, затрагивающее таламус – фатальная бессонница, которая может распространяться на нескольких представителей одной семьи. Болезнь возникает по причине мутации соответствующей зоны таламуса, которая отвечает за регулирование процессов сна и бодрствования. Из-за мутации происходит сбой в правильной работе соответствующего участка, и человек перестает спать.

    Таламус – также является центр болевой чувствительности. При поражении соответствующих ядер таламуса возникает невыносимая боль либо, наоборот, полная потеря чувствительности.

    Таламус, да и мозг в целом продолжают оставаться не до конца изученными структурами. И дальнейшие исследования сулят большие научные открытия и помощь в познании этого жизненно важного и сложного органа.