Биологическая продуктивность экосистем фотосинтез растений. Какие экосистемы самые продуктивные

С каждым годом человек все больше и больше истощает ресурсы планеты. Неудивительно, что в последнее время огромное значение приобретает оценка того, как много ресурсов может дать тот или иной биоценоз. Сегодня продуктивность экосистемы имеет решающее значение при выборе способа хозяйствования, так как от количества продукции, которое может быть получено, напрямую зависит экономическая обоснованность работ.

Вот основные вопросы, которые сегодня стоят перед учеными:

  • Сколько солнечной энергии доступно и сколько ассимилируется растениями, как это измерено?
  • У каких самая высокая производительность и какие дают больше всего первичной продукции?
  • Какие количество в местном масштабе и во всем мире?
  • Какова эффективность, с которой энергия преобразуется растениями?
  • Каковы различия между эффективностью ассимиляции, чистой продукции и экологической эффективностью?
  • Как экосистемы отличаются по количеству биомассы или объему
  • Сколько энергии доступно людям и сколько мы используем?

Мы постараемся хотя бы частично ответить на них в рамках этой статьи. Во-первых, разберемся с основными понятиями. Итак, продуктивностью экосистемы называется процесс накопления органического вещества в определенном объеме. Какие же организмы ответственны за эту работу?

Автотрофы и гетеротрофы

Мы знаем, что некоторые организмы способны к синтезированию органических молекул из неорганических предшественников. Их называют автотрофами, что означает "самокормление". Собственно, продуктивность экосистем зависит именно от их деятельности. Автотрофы также упоминаются как первичные продуценты. Организмы, которые в состоянии производить сложные органические молекулы из простых неорганических веществ (вода, CO2), чаще всего относятся к классу растений, но теми же способностями обладают некоторые бактерии. Процесс, при помощи которого они синтезируют органику, называется фотохимическим синтезом. Как нетрудно понять из названия, фотосинтез требует наличия солнечного света.

Мы также должны упомянуть путь, известный как хемосинтез. Некоторые автотрофы, главным образом специализированные бактерии, могут преобразовать неорганические питательные вещества в органические соединения без доступа солнечного света. Есть несколько групп в морской и пресной воде, причем особенно часто они встречаются в средах с повышенным содержанием сероводорода или серы. Как хлорофиллоносные растения и другие организмы, способные к фотохимическому синтезу, хемосинтетические организмы - автотрофы. Впрочем, продуктивностью экосистемы называется скорее деятельность растительности, так как именно она отвечает за накопление более 90 % органического вещества. Хемосинтез играет в этом несоизмеримо меньшую роль.

Меж тем, многие организмы могут получать необходимую энергию, только питаясь другими организмами. Их называют гетеротрофами. В принципе, к ним относятся все те же растения (они тоже «едят» готовую органику), животные, микробы, грибы и микроорганизмы. Гетеротрофов также называют «потребителями».

Роль растений

Как правило, под словом «продуктивность» в этом случае понимается способность растений запасать определенное количество органического вещества. И в этом нет ничего удивительного, так как только растительные организмы могут преобразовывать неорганические вещества в органические. Без них сама жизнь на нашей планете была бы невозможна, а потому и продуктивность экосистемы рассматривается с этой позиции. В общем, вопрос ставится крайне просто: так какую массу органического вещества способны запасти растения?

Какие биоценозы являются наиболее продуктивными?

Как ни странно, но созданные человеком биоценозы являются далеко не самыми продуктивными. Джунгли, болота, сельвы крупных тропических рек в этом плане их далеко опережают. Кроме того, именно эти биоценозы обезвреживают громадное количество токсических веществ, которые, опять-таки, попадают в природу в результате человеческой деятельности, а также вырабатывают более 70 % кислорода, содержащегося в атмосфере нашей планеты. Кстати, во многих учебниках до сих пор утверждается, что наиболее продуктивной «житницей» являются океаны Земли. Как ни странно, но это утверждение очень далеко от истины.

«Океанический парадокс»

Знаете, с чем сравнивается биологическая продуктивность экосистем морей и океанов? С полупустынями! Большие же объемы биомассы объясняются тем, что именно водные просторы занимают большую часть поверхности планеты. Так что неоднократно предсказанное использование морей в качестве основного источника питательных веществ для всего человечества в ближайшие годы вряд ли возможно, так как экономическая обоснованность подобного крайне низка. Впрочем, низкая продуктивность экосистем этого типа ни в коей мере не умаляет важности океанов для жизни всего живого, так что их нужно охранять как можно более тщательным образом.

Современные экологи говорят, что возможности сельскохозяйственных угодий далеко не исчерпаны, и в будущем мы сможем получать с них более обильные урожаи. Особые надежды возлагают на которые могут давать огромное количество ценной органики за счет своих уникальных характеристик.

Основные сведения о продуктивности биологических систем

В общем и целом продуктивность экосистемы определяется скоростью фотосинтеза и накопления органических веществ в том или ином биоценозе. Та масса органики, которая создается за единицу времени, называется первичной продукцией. Выразить ее можно двумя способами: или в Джоулях, или же в сухой массе растений. Валовой продукцией называется ее объем, созданный растительными организмами за определенную единицу времени, при постоянной скорости процесса фотосинтеза. Следует помнить, что часть этого вещества пойдет на жизнедеятельность самих растений. Оставшаяся после этого органика - чистая первичная продуктивность экосистемы. Именно она идет на питание гетеротрофов, к числу которых относимся и мы с вами.

Есть ли «верхний предел» первичной продукции?

Если говорить кратко, то "да". Давайте вкратце рассмотрим, насколько в принципе эффективен процесс фотосинтеза. Вспомните, что интенсивность солнечной радиации, достигающей поверхности земли, сильно зависит от местоположения: максимальная энергетическая отдача характерна для экваториальных зон. Она уменьшается по экспоненте по мере приближения к полюсам. Примерно половина солнечной энергии отражается льдом, снегом, океанами или пустынями, поглощается газами в атмосфере. Например, слой озона атмосферы абсорбирует почти все ультрафиолетовое излучение! Только половина света, который попадает на листья растений, используется в реакции фотосинтеза. Так что биологическая продуктивность экосистем - результат преобразования ничтожной части энергии солнца!

Что такое вторичная продукция?

Соответственно, вторичной продукцией называется прирост консументов (то есть потребителей) за какой-то определенный промежуток времени. Конечно, продуктивность экосистемы от них зависит в намного меньшей степени, но именно эта биомасса играет важнейшую роль в жизни человека. Следует учесть, что вторичную органику отдельно подсчитывают на каждом трофическом уровне. Таким образом, виды продуктивности экосистемы делятся на два типа: первичный и вторичный.

Соотношение первичной и вторичной продукции

Как можно догадаться, соотношение биомассы и общей растительной массы сравнительно невелико. Даже в джунглях и болотах этот показатель редко превышает отметку в 6,5 %. Чем больше травянистых растений в сообществе, тем выше скорость накопления органики и тем значительнее расхождение.

О скорости и объемах образования органических веществ

Вообще предельная скорость образования органического вещества первичного происхождения полностью зависит от состояния фотосинтетического аппарата растений (ФАР). Максимальное значение эффективности фотосинтеза, которое было достигнуто в лабораторных условиях, составляет 12 % от величины ФАР. В природных же условиях и значение в 5 % считается предельно высоким и практически не встречается. Считается, что на Земле усвоение солнечного света не превышает 0,1 %.

Распределение первичной продукции

Следует отметить, что продуктивность природной экосистемы - штука крайне неравномерная в масштабах всей планеты. Общая масса всего органического вещества, которое ежегодно образуется на поверхности Земли, составляет порядка 150-200 млрд тонн. Помните, что мы говорили о продуктивности океанов выше? Так вот, 2/3 этого вещества образуются на суше! Только представьте себе: гигантские, неимоверные объемы гидросферы образуют в три раза меньше органики, чем мизерная часть суши, немалую часть которой представляют пустыни!

Более 90 % накопленной органики в том или ином виде идет на пищу гетеротрофным организмам. Лишь ничтожная часть солнечной энергии запасается в виде почвенного гумуса (а также нефти и угля, образование которых идет даже сегодня). На территории нашей страны прирост первичной биологической продукции варьирует от 20 ц/га (близ Северного Ледовитого океана) до более 200 ц/га на Кавказе. В пустынных областях эта величина не превышает 20 ц/га.

В принципе, на пяти теплых континентах нашего мира интенсивность продуцирования практически не отличается, почти: в Южной Америке растительность накапливает раза в полтора больше сухого вещества, что обусловлено отличными климатическими условиями. Там продуктивность природных и искусственных экосистем максимальна.

Что обеспечивает питание людей?

Приблизительно 1,4 млрд Га занимают на поверхности нашей планеты плантации культивируемых человеком растений, которые обеспечивают нас с вами пищей. Это - приблизительно 10 % от всех экосистем планеты. Как ни странно, но только половина получаемой продукции идет непосредственно в пищу людям. Все остальное используется в качестве корма для домашних животных и идет на нужды промышленного производства (не относящегося к выпуску продуктов питания). Ученые уже давно бьют тревогу: продуктивность и биомасса экосистем нашей планеты способны обеспечить не более 50 % потребностей человечества в белке. Проще говоря, половина населения планеты живет в условиях хронического белкового голодания.

Биоценозы-рекордсмены

Как мы уже и говорили, наибольшей продуктивностью характеризуются экваториальные леса. Только вдумайтесь: на один гектар такого биоценоза может приходиться более 500 тонн сухого вещества! И это далеко не предел. В Бразилии, к примеру, один гектар леса продуцирует от 1200 до 1500 тонн (!) органического вещества за год! Вдумайтесь только: на квадратный метр приходится до двух центнеров органики! В тундрах на той же площади образуется не более 12 т, а в лесах средней полосы - в пределах 400 т. Этим активно пользуются сельскохозяйственные хозяйства в тех краях: продуктивность искусственной экосистемы в виде поля сахарного тростника, который может накопить до 80 тонн сухого вещества на гектар, больше нигде таких урожаев не сможет дать физически. Впрочем, слабо отличаются от них заливы Ориноко, Миссисипи, а также некоторые области Чада. Здесь за год экосистемы «выдают» до 300 тонн вещества на гектар площади!

Итоги

Таким образом, оценку продуктивности следует проводить именно по первичному веществу. Дело в том, что вторичная продукция составляет не более 10 % от этого значения, ее величина сильно колеблется, а потому делать подробный анализ этого показателя попросту невозможно.

1. Продуктивность и динамика экосистем.2.Человек и экосистемы.

Одно из важнейших свойств организмов, их популяций и экосистем в целом – способность создавать органическое вещество, которое называют продукцией. Образование продукции в единицу времени (час, сутки, год) на единице площади (метры квадратные, гектар) или объёма (в водных экосистемах), выраженное в единицах массы (граммы, килограммы, тонны), характеризует продуктивность экосистем. Продуктивность экологической системы - это скорость, с которой продуценты усваивают лучистую энергию в процессе фотосинтеза и хемосинтеза, образуя органическое вещество, которое затем может быть использовано в качестве пищи. Различают разныеуровни продуцирования , на которых создаётся первичная и вторичная продукция. Органическое вещество, создаваемое продуцентами в процессе фотосинтеза или хемосинтеза, называютпервичной продукцией экосистемы (сообщества) . Количественно её выражают в сырой или сухой массе растений или в энергетических единицах – эквивалентном числе джоулей. Первичной продукцией определяется общий поток энергии через биотический компонент экосистемы. Теоретическая возможная скорость создания первичной биологической продукции определяется возможностями фотосинтетического аппарата растений. Первичная продукция подразделяется как бы на два уровня – валовую и чистую продукцию. Скорость, с которой растения накапливают химическую энергию, называетсяваловой первичной продуктивностью (ВВП). Около20% этой энергии расходуется растениями на дыхание и фотодыхание. Скорость накопления органического вещества, за вычетом этого расхода называетсячистой первичной продуктивностью (ЧПП), это энергия, которую могут использовать организмы следующих трофических уровней. Количество органического вещества, накопленного гетеротрофными организмами, называетсявторичной продукцией. Вторичную продукцию вычисляют отдельно для каждого трофического уровня, так как прирост массы на каждом из них происходит за счёт энергии, поступающей с предыдущего. Наряду с продукцией различаютбиомассу организма, групп организмов или экосистем в целом. Под ней понимаютвсё живое вещество, которое содержится в экосистеме или её элементах вне зависимости от того, за какой период она образовалась и накопилась. Первичная продукция биосферы Земли оценивается в 170 млрд. т, а вторичная – в 4 млрд. т сухого органического вещества в год. В климатических поясах среди природных экосистем преобладают те, которые получают энергию только от Солнца. К природным энергетически дотируемым (т.е. получающим дополнительную энергию) экосистемам относятся эстуарии, дельты и поймы рек, а также некоторые болота. К ним относятся также агроэкосистемы и аквакультуры, одновременно культивируемые человеком и получающие энергию Солнца. Особую категорию составляют промышленно-городские экосистемы, функционирующие с использованием только энергии топлива. Питание людей большей частью обеспечивается сельскохозяйственными культурами, занимающими около 10% площади суши. Всего человек потребляет около 0,2% первичной продукции Земли. Особенно трудно обеспечить население вторичной продукцией. В рацион человека должно входить не менее 30 г белков в день. Следовательно, увеличение биологической продуктивности экосистем и особенно вторичной продукции является одной из основных задач, стоящих перед человечеством. Многообразные изменения, происходящие в любом сообществе, относят к двум основным типам: циклические и поступательные.Периодически повторяющуюся динамику называют циклическими изменениями или флуктуациями, а направленную динамику именуют поступательной или развитием экосистем. Циклические изменения сообществ отражают суточную, сезонную и многолетнюю периодичность внешних условий и проявления эндогенных ритмов организмов.Многолетняя цикличность проявляется благодаря флуктуациям климата.Флюктуация (от лат. fluctuatio – колебания) – сравнительно краткосрочные изменения, когда сообщества без смены флористического состава отклоняются от некоего среднего состояния вследствие сезонных и погодных изменений климата, а также изменения динамики животного компонента экосистемы либо способов их использования.Поступательные изменения в экосистеме приводят в конечном итоге к смене одного биоценоза другим, с иным набором господствующих видов.Последовательная смена одного биоценоза другим называется экологической сукцессией . Последовательный ряд постепенно и закономерно сменяющих друг друга в сукцессии сообществ называетсясукцессионной серией . По Ф. Клементсону (1916), процесс сукцессии состоит из следующих этапов: 1. Возникновение не занятого жизнью участка. 2. Миграции на него различных организмов или их зачатков. 3. Приживание их на данном участке. 4. Конкуренции их между собой и вытеснение отдельных видов. 5. Преобразование живыми организмами местообитания, постепенной стабилизации условий и отношений. Сукцессии со сменой растительности могут быть первичными и вторичными.Первичной сукцессии называется процесс развития в смены экосистем на незаселённых ранее участках, начинающихся с их колонизации.Вторичная сукцессия – это восстановление экосистемы, когда-то уже существовавшей на данной территории. Вторичные сукцессии совершаются, как правило, быстрее и легче, чем первичные, так как в нарушенном местообитании сохраняется почвенный профиль, семена, зачатки и часть прежнего населения и прежних связей. Сукцессия завершается стадией, когда все виды экосистемы, размножаясь, сохраняют относительно постоянную численность и дальнейшей смены её состава не происходит. Такое равновесное состояние называют –климаксом , а экосистему –климаксовой . Способность экосистемы к самоподдержанию и саморегулированию называетсягомеостазом . Человек в конкурентной борьбе за выживание в природной окружающей среде начал строить свои искусственные антропогенные экосистемы.

Агроэкосистемы создаются человеком для повышения высокого урожая – чистой продукции автотрофов. Упрощение природного окружения человека, с экологических позиций очень опасно. Поэтому нельзя превращать весь ландшафт в агрохозяйственный, необходимо сохранять и умножать его многообразие, оставляя не тронутые заповедные участки, которые могли бы быть источником видов для восстанавливающихся и сукцессионных рядов сообщества.

Литература: 1. Коробкин В.И. и др. Экология. – М., 2003. с.130-150.2. Николайкин Н.И. и др. Экология. – М., 2004. с.155-163, 171-180.3. Аскарова М.А. Общая экология. – Алматы, 2004. с. 86-94.4. Степановских А.С. Общая экология. – М., 1999. с. 404-419.

Лучистая энергия солнца, усваиваемая зелеными автотрофными растениями, превращается в энергию химических связей синтезируемого вещества. Скорость фиксации солнечной энергии определяет продуктивность сообществ. Продуктивность автотрофных организмов представляет собой первичную продуктивность . Продуктивность представителей других трофических уровней составляет вторичную продуктивность .

Основной показатель продуктивности - биомасса организмов (растительных и животных), составляющих экосистему. Биомасса - это выраженное в единицах массы или энергии количество живого вещества организмов, приходящееся на единицу площади или объема (например, г/м2, г/м3, кг/га, т/км2 и др.). Используют массу либо сырого, либо, чаще всего, сухого вещества. Различают растительную биомассу (фитомассу), животную (зоомассу), бактериомассу, либо биомассу каких-либо конкретных групп или организмов отдельных видов.

Величина биомассы меняется в зависимости от сезона года, миграций животных, от степени ее потребления.

Биомасса, производимая биоценозом на единице площади за единицу времени, называется биологической продукцией . Она выражается в тех же величинах, что и биомасса, но с указанием времени, за которое она создана (например, кг/га за месяц).

Различают 2 вида продукции - первичную и вторичную.

Первичная продукция - это биомасса, произведенная автотрофными организмами (зелёными растениями) на единице площади за единицу времени.

Суммарная продукция фотосинтеза называется первичной валовой продукцией . Это вся химическая энергия в форме произведенного органического вещества. При этом часть энергии может идти на поддержание жизнедеятельности (дыхание) самих производителей продукции - растений. Если мы изымем ту часть энергии, которая тратится растениями на дыхание, то получим чистую первичную продукцию .

Зеленые растения могут перерабатывать от 1 до 5% получаемой энергии Солнца. Животные, питающиеся растениями, для образования биомассы своего тела используют всего 1% энергии, содержащейся в растительном материале.

Вторичная продукция - это биомасса, созданная всеми консументами экосистемы за единицу времени.

В целом вторичная продукция колеблется от 1 до 10% в зависимости от свойств животного и особенностей поедаемого корма.

По участию в биологическом круговороте веществ в экосистеме различают 3 группы организмов.

  • 1 Продуценты (автотрофные организмы). Являясь организмами-продуцентами, автотрофы синтезируют с помощью солнечного света из СО2 и Н2O, а также неорганических солей почвы органические соединения, преобразуя при этом световую энергию в химическую. Они обеспечивают органическими веществами и энергией все живое население биоценоза.
  • 2 Консументы (потребители). Они не способны синтезировать вещества своего тела из неорганических составляющих. К ним относятся все животные, которые извлекают необходимую энергию из готовой пищи, поедая растения или других животных. Первичными консументами являются растительноядные животные (фитофаги), питающиеся травой, семенами, плодами, подземными частями растений - корнями, клубнями, луковицами и даже древесиной (некоторые насекомые). Ко вторичным консументам относят плотоядных животных (хищников).

3 Редуценты (от лат. reducens, reducentis - возвращающий, восстанавливающий) - микроорганизмы и грибы, разрушающие мертвое органическое вещество и превращающие его в воду, СО2 и неорганические вещества, которые в состоянии усваивать другие организмы (продуценты). Основными редуцентами являются бактерии, грибы, простейшие, т.е. гетеротрофные микроорганизмы.

Осуществляя пищевые взаимодействия, организмы биоценоза выполняют 3 функции :

  • 1) энергетическую - выражается в запасании энергии в форме химических связей первичного органического вещества; её выполняют организмы-продуценты;
  • 2) перераспределения и переноса энергии пищи - её выполняют консументы;
  • 3) разложения органического вещества редуцентами до простых минеральных соединении, которые снова вовлекаются в биологический круговорот организмами-продуцентами.

Перенос веществ и заключенной в них энергии от автотрофов к гетеротрофам, происходящий в результате поедания одними организмами других, называется пищевой цепью . Число звеньев в ней может быть различным, но обычно их бывает от 3 до 5.

Совокупность организмов, объединенных одним типом питания и занимающих определенное положение в пищевой цепи, носит название трофический уровень . К одному трофическому уровню принадлежат организмы, получающие свою энергию от Солнца через одинаковое число ступеней.

Пищевые цепи, которые начинаются с автотрофных фото-синтезирующих организмов, называются пастбищными, или цепями выедания .

Если пищевая цепь начинается с отмерших остатков растений, трупов и экскрементов животных (детрита), она называется детритной, или цепью разложения .

В биоценозах обычно существует ряд параллельных пищевых цепей - пищевая сеть . Сокращение численности особей одного вида - звена в пищевой цепи, вызванное деятельностью человека или другими причинами, неизбежно приводит к нарушениям целостности экосистемы.

В результате последовательности превращений энергии в пищевых цепях каждое сообщество живых организмов приобретает определенную трофическую структуру. Трофическую структуру обычно отображают графическими моделями в виде экологических пирамид.

Эффект пирамиды в виде таких моделей разработал в 1927 г. английский зоолог Чарлз Элтон. Основанием пирамиды служит первый трофический уровень - уровень продуцентов, а последующие уровни образуют консументы различных порядков. При этом высота всех блоков одинакова, а длина - пропорциональна числу, биомассе или энергии на соответствующем уровне. Различают три способа построения экологических пирамид.

  • 1 Пирамида чисел (численностей) отражает численность отдельных организмов на каждом уровне. Например, чтобы прокормить одного волка, необходимо по крайней мере несколько зайцев, на которых он мог бы охотиться; чтобы прокормить этих зайцев, нужно довольно большое количество разнообразных растений. Иногда пирамиды чисел могут быть обращенными, или перевернутыми. Это касается пищевых цепей леса, когда продуцентами служат деревья, а первичными консументами - насекомые. В этом случае уровень первичных консументов численно богаче уровня продуцентов (на одном дереве кормится большое количество насекомых).
  • 2 Пирамида биомасс - соотношение между организмами разных трофических уровней (продуцентами, консументами и редуцентами), выраженное в их массе. Обычно в наземных биоценозах общая масса продуцентов больше, чем каждого последующего звена. В свою очередь, общая масса консументов первого порядка больше, нежели общая масса консументов второго порядка и т.д. Если организмы не слишком различаются по размерам, то на графике обычно получается ступенчатая пирамида с суживающейся верхушкой. Так, для образования 1 кг говядины необходимо 70-90 кг свежей травы.

В водных экосистемах можно также получить обращенную (или перевернутую) пирамиду биомасс, когда биомасса продуцентов оказывается меньшей, нежели биомасса консументов, а иногда и редуцентов. Например, в океане при довольно высокой продуктивности фитопланктона его общая масса в данный момент может быть меньше, нежели масса потребителей-консументов (киты, крупные рыбы, моллюски).

3. Пирамида энергии отражает величину потока энергии, скорость прохождения массы нищи через пищевую цепь. На структуру биоценоза в большей степени оказывает влияние не количество фиксированной энергии, а скорость продуцирования пищи.

Пирамида энергии, в отличие от пирамид чисел и биомасс, всегда суживается кверху.

Потребленная пища на каждом трофическом уровне ассимилируется не полностью. Значительная её часть тратится на обмен веществ. При переходе к каждому последующему звену пищевой цепи общее количество пригодной для использования энергии, передаваемой на следующий, более высокий трофический уровень, уменьшается. Продукция каждого последующего уровня примерно в 10 раз меньше продукции предыдущего.

В 1942 г. Р. Линдеман сформулировал закон пирамиды энергии (или закон 10 процентов), согласно которому с одного трофического уровня через пищевые цепи на другой трофический уровень переходит в среднем около 10% поступившей на предыдущий уровень экологической пирамиды энергии . Остальная её часть теряется в виде теплового излучения. Организмы в результате процессов обмена теряют в каждом звене пищевой цепи около 90% всей энергии, которая расходуется на поддержание их жизнедеятельности.

Вот почему цепи питания обычно не могут иметь более 3-5 (редко 6) звеньев, а экологические пирамиды не могут состоять из большого количества этажей.

Биологическая продуктивность – общее количество органического вещества, производимое за единицу времени на единицу площади.

Общая масса особей одного вида, группы видов или сообщества в целом, приходящаяся на единицу поверхности или объема местообитания называется биомассой . Выражается она в массе сырого или сухого вещества, а также углерода или азота Ее выражают в г/ см 2 , кг/га, г/м 3 , в сыром или сухом виде, или в единицах энергии - в калориях, джоулях и т.п. Биомасса растений носит название фитомассы, животных – зоомассы. По биомассе отдельных компонентов судят о количественных соотношениях масс организмов.

Прирост биомассы организмов вида или всего сообщества за определенный период называется продукцией .

Различают первичную и вторичную продукцию сообщества.

Первичная продукция – биомасса, созданная за единицу времени продуцентов. Она делится на валовую и чистую. Валовая первичная продукция (общая ассимиляция) – это общая биомасса, созданная растениями в ходе фотосинтеза. Часть ее расходуется на поддержание жизнедеятельности растений – траты на дыхание (40-70%). Чистую первичную продукцию (чистая ассимиляция) – это скорость накопления создаваемого органического вещества сверх того, которое затрачено на дыхание. Она в дальнейшем используется консументами и редуцентами, или накапливается в экосистеме.

Вторичная продукция - биомасса, созданная за единицу времени консументами. Она различна для каждого следующего трофического уровня.

Теоретически скорость создания первичной биологической продукции определяется возможностями фотосинтетического аппарата растений. Известно, что каждую минуту на 1 см 2 земной атмосферы поступает 2 калории солнечной энергии (солнечная постоянная или константа). Растения используют лишь 21-46% солнечной энергии получаемой земной поверхностью. Максимально допустимый в природе к.п.д. фотосинтеза 10-12% энергии ФАР. В целом же по земному шару усвоение растениями солнечной энергии не превышает 0,1% из-за ограничения фотосинтетической активности растений различными факторами (недостаток тепла, влаги, неблагоприятные свойства почвы и т.д.)

Для большинства типов растительного покрова к.п.д. поглощенной ФАР составляет в среднем 1-2%. Пустынные кустарники имеют к.п.д. 0,03%; травянистые альпийские растения – 0,15-0,75%. Наиболее высокий к.п.д. у лесных экосистем – 2-4%. Средний к.п.д. для территории России – 0,8%, на европейской части он составляет 1,0-1,2%, в восточных районах – 0,4-0,8% .

Среднее значение первичной продукции по земному шару составляет 3 т/га. Максимальные количества сосредоточены в вечнозеленых тропических дождевых лесах (более 500 т/га), самой низкой пустыни (7 т/га) и тундра (6 т/га). Морские растения ежегодно фотосинтезируют до 3,0 10 10 т органических веществ, а наземные – 5,3 10 10 т. В целом на планете каждый год путем фотосинтеза создается до 8,3 10 10 т органических веществ. Из 5,3 10 10 т, производимых на суше, на долю лесов приходится 2,84 10 10 т, остальное синтезируется травянистой и культивируемой растительностью.

Если в экосистеме скорость прироста растений (образования первичной продукции) выше темпов переработки ее консументами и редуцентами, то это ведет к увеличению биомассы продуцентов. Если при этом присутствует недостаточная утилизация продуктов опада в цепях разложения, то происходит накопление мертвого органического вещества. Это ведет к заторфовыванию болот, зарастанию мелких водоемов, образованию мощной лесной подстилки и т. п. В стабильных экосистемах биомасса остается постоянной, так как практически вся продукция расходуется в цепях питания.

По продуктивности сообщества делят на 4 класса:

1. Сообщества высшей продуктивности 2-3 кг/м 2 /год. Это тропические леса, посевы риса и сахарного тростника, заросли тростников в дельтах Волги, Дона;

2. Сообщества высокой продуктивности 1-2 кг/м 2 / год. В этот класс включены листопадные леса умеренной зоны, луга при применении удобрений, посевы кукурузы;

3. Сообщества умеренной продуктивности, 0, 25-1 кг/м 2 год. К этому классу относят посевы основной массы возделываемых с/х культур, сосновые и березовые леса, сенокосные луга, степи;

4. Сообщества низкой продуктивности, ниже 0,25 кг/м 2 / год - пустыни, полупустыни, тундра.

Таблица 4 - Биомасса разных типов экосистем (Н. Ф. Реймерс, 1990)

Таблица 5 - Первичная биологическая продукция основных экосистем земного шара

(Н. Ф. Реймерс, 1990)

Питание людей большей частью обеспечивает сообществами умеренной продуктивности, т.е. сообществами из сельскохозяйственных культур. Годовой прирост культурных растений равен примерно 16% от всей продуктивности суши. В антропогенный канал, образуемый людьми и животными, поступает примерно 1/4, что составляет примерно 9 млрд. т. продуктов с.-х. производства. Около 90% заключенной в этих продуктах энергии обеспечивается растениеводческой продукцией. Из известных 80 тыс. съедобных растений на земном шаре культивируется немногим более 80 видов (культурная флора СНГ составляет более 50 видов). Наиболее широкое распространение получили: рис, пшеница, кукуруза, картофель, ячмень, батат, маниок, соя, овес, сорго, просо, сахарный тростник, сахарная свекла, рожь, арахис. На рис и пшеницу приходится более 40%. Злаковые культуры дают почти 50% белка потребляемого человеком.

  • 6.Антропогенное влияние на круговороты основных биогенных элементов в биосфере.
  • 7.Основные этапы изменения взаимоотношений человека с природой в ходе его исторического развития.
  • 8.Проблема глобального изменения климата на планете: возможные причины, последствия, пути решения.
  • 9.Опустынивание земель как глобальная экологическая проблема.
  • 10.Проблема обеспечения пресной водой как глобальная экологическая проблема.
  • 11.Проблема деградации почв: причины и последствия в глобальном масштабе.
  • 12.Экологическая оценка глобальной демографической ситуации.
  • 13.Глобальная экологическая проблема загрязнения Мирового океана. В чем причины и экологическая опасность этого процесса?
  • 14.Проблема сокращения биологического разнообразия: причины, экологические последствия, возможные пути решения проблемы.
  • 15.Экологические факторы: понятие и классификация. Основные механизмы действия экологических факторов на живые организмы.
  • 16.Адаптация: понятие адаптации, ее экологическая роль.
  • 17.Основные закономерности действия экологических факторов на живые организмы.
  • 18.Типы биотических взаимоотношений в природе, их экологическая роль.
  • 19.Понятия – стенобионтность и эврибионтность.
  • 20.Понятие популяции, ее биологический и экологический смысл.
  • 21.Численность, плотность, прирост популяции. Регуляция численности.
  • 22.Рождаемость и смертность в популяции: теоретическая и экологическая. Факторы их определяющие.
  • 23.Половая структура популяции и факторы ее определяющие.
  • 24.Возрастная структура популяции, основные типы популяций в зависимости от соотношения возрастов.
  • 25.Пространственная структура популяции и факторы ее определяющие.
  • 26.Этологическая (поведенческая) структура популяции и факторы ее определяющие.
  • 27.Экологические стратегии популяций (r- и k- жизненные стратегии). Их экологический смысл.
  • 28.Выживаемость и кривые выживания организмов в популяции, экологический смысл кривых выживания.
  • 29. Кривые роста популяций, экологическая значимость каждой из стадий роста.
  • 30.Понятие экосистемы, ее основные компоненты, типы экосистем.
  • 31. Пирамиды численности, биомассы, энергии в экосистемах, их экологический смысл.
  • 32.Поток энергии в экосистеме. Правило 10 % энергии.
  • 33.Поток вещества в экосистеме. Принципиальная разница потока вещества и энергии.
  • 34.Пищевые цепи. Эффект накопления токсикантов в пищевых цепях.
  • 35.Продуктивность экологических систем. Наиболее продуктивные экосистемы Земного шара, их экологические проблемы.
  • 36.Экологическая сукцессия, виды сукцессии.
  • 37.Продуценты, консументы и редуценты, их место в цепи питания и экологическая роль в экосистемах.
  • 38.Место и роль человека в экологической системе.
  • 39.Естественные и искусственные экосистемы, их экологическая устойчивость.
  • 40.Понятие загрязнения окружающей среды, естественное и антропогенное загрязнение.
  • 41.Основные виды антропогенного воздействия на окружающую среду: химическое, энергетическое, биологическое загрязнение среды.
  • 42.Экологическая ситуация и здоровье человека. Адаптации человека к действию экстремальных факторов среды.
  • 43.Нормирование качества окружающей среды: цели нормирования, виды нормативов.
  • 44. Принципы, лежащие в основе выработки пдк.
  • 45.Мониторинг среды обитания: понятие, цели и виды мониторинга.
  • 46. Экологические проблемы Дальнего Востока.
  • 35.Продуктивность экологических систем. Наиболее продуктивные экосистемы Земного шара, их экологические проблемы.

    Биологическая продукция – это количество биологического вещества, которое создано за единицу времени на единицу площади (гр/м², кг/м²).

    Биологическая продукция:

    Первичная (валовая); Вторичная (чистая).

    Валовая продукция - это та продукция, которую создают растения в процессе фотосинтеза.

    Чистая продукция – это та часть энергии, которая осталась после расходов на дыхание.

    Средняя продуктивность экосистем земли не превышает 0,3кг/м². При переходе энергии с одного уровня на другой, теряется примерно 90% энергии, поэтому вторичная продукция в 20-50 раз меньше, чем первичная

    Производительность экосистемы, измеряемая количеством органического вещества, которое создано за единицу времени на единицу площади, называется биологической продуктивностью. Единицы измерения продуктивности: г/м² в день, кг/м² в год, т/км ² в год.

    Различают первичную биологическую продукцию, которую создают продуценты, и вторичную биологическую продукцию, которую создают консументы и редуценты.

    Первичную продукцию подразделяют на: валовую – это общее количество созданного органического вещества, и чистую – это то, что осталось после расхода на дыхание и корневые выделения.

    По продуктивности экосистемы делятся на четыре класса:

    1.Экосистемы очень высокой биологической продуктивности – свыше 2 кг/м² в год. К ним относятся заросли тростника в дельтах Волги, Дона и Урала.

    2.Экосистемы высокой продуктивности – 1-2 кг/м² в год. Это липово-дубовые леса, заросли рогоза или тростника на озере, посевы кукурузы.

    3.Экосистемы средней биологической продуктивности – 0,25-1 кг/м² в год. К ним относятся сосновые, берёзовые леса, сенокосные луга, степи.

    4.Экосистемы низкой биологической продуктивности – менее 0,25 кг/м² в год.

    Это арктические пустыни, тундры, большая часть морских экосистем.

    Средняя продуктивность экосистем земли составляет 0,3 кг/м² в год, т. е. на Земле преобладают средние и низкопродуктивные экосистемы.

    При переходе с одного трофического уровня на другой теряется 90% энергии.

    Примером повышенной продуктивности на стыках экосистем мо­гут служить переходные экосистемы между лесом и полем («опу­шечный эффект»), а в водных средах - экосистемы, возникающие в эстуариях рек (места впадения их в моря, океаны и озера и т. п.).

    Этими же закономерностями во многом обусловливаются упо­минавшиеся выше локальные сгущения больших масс живого ве­щества (наиболее высокопродуктивные экосистемы).

    Обычно в океане выделяют следующие сгущения жизни:

    1. Прибрежные. Они располагаются на контакте водной и наземно-воздушной среды. Особенно высокопродуктивны экосистемы эстуариев. Протяженность этих сгущений тем значительнее, чем больше вынос реками органических и минеральных веществ с суши.

    2. Коралловые рифы. Высокая продуктивность этих экосистем связана прежде всего с благоприятным температурным режимом, фильтрационным типом питания многих организмов, видовым бо­гатством сообществ, симбиотическими связями и другими факто­рами.

    3. Саргассовые сгущения. Создаются большими массами плавающих водорослей, чаще всего саргассовых (в Саргассовом море) и филлофорных (в Черном море).

    4. Апвеллинговые. Эти сгущения приурочены к районам океана, где имеет место восходя­щее движение водных масс от дна к поверхности (апвеллинг). Они несут много донных органических и минеральных отложений и в результате активного перемешивания хорошо обеспечены кисло­родом. Эти высокопродуктивные экосистемы являются одним из основных районов промысла рыб и других морепродуктов.

    5. Рифтовые глубоководные (абиссальные) сгущения. Эти экосистемы были открыты только в 70-х годах настоящего столетия. Они уникальны по своей природе: существуют на больших глубинах (2-3 тыс. метров). Первичная продукция в них образуется только в результате процессов хемосинтеза за счет высвобождения энергии из сернистых соединений, поступающих из разломов дна (рифтов). Высокая продуктивность здесь обязана прежде всего благо­приятным температурным условиям, поскольку разломы одновременно являются очагами выхода из недр подогретых (термальных) вод. Это единственные экосистемы, не использующие солнечную энергию. Они живут за счет энергии недр Земли.

    На суше к наиболее высокопродуктивным экосистемам (сгущениям живого вещества) относят: 1) экосистемы берегов морей и океанов в районах, хорошо обеспеченных теплом; 2) экосистемы пойм, периодически заливаемые водами рек, которые откладывают ил, а вместе с ним органические и биогенные вещества, 3) экосистемы небольших внутренних водоемов, бога­тые питательными веществами, а также 4) экосистемы тро­пических лесов. Продуктивность других экосистем видна из табл.3. Выше мы уже отмечали, что человек должен стремиться сохранить высокопродуктивные экосистемы - этот мощнейший каркас биосферы. Его разрушение связано с наиболее значительными отрицательными последствиями для всей биосферы.

    Что касается вторичной (животной) продукции, то она заметно выше в океане, чем в наземных экосистемах. Это связано с тем, что на суше в звено консументов (травоядных) в среднем включается лишь около 10% первичной продукции, а в океане - до 50%. Поэтому, несмотря на более низкую первичную продуктивность океана, чем суши, по массе вторичной продукции эти экосистемы примерно равны.

    В наземных экосистемах основную продукцию (до 50%) и особенно биомассу (около 90%) дают лесные экосистемы. Вместе с тем основная масса этой продукции поступает сразу в звено деструкторов и редуцентов. Для таких экосистем характерно преобладание детритных (за счет мертвого органического вещества) цепей питания. В травянистых экосистемах (луга, степи, прерии, саванны), как и в океане, значительно большая часть первичной продукции прижизненно отчуждается фитофагами (травоядными животными). Такие цепи носят название пастбищных или цепей выеданния.