Водород. Свойства, получение, применение

Рассмотрим, что собой представляет водород. Химические свойства и получение этого неметалла изучают в курсе неорганической химии в школе. Именно этот элемент возглавляет периодическую систему Менделеева, а потому заслуживает детального описания.

Краткие сведения об открытии элемента

Прежде чем рассматривать физические и химические свойства водорода, выясним, как был найден этот важный элемент.

Химики, которые работали в шестнадцатом и семнадцатом веках, неоднократно упоминали в своих трудах о горючем газе, который выделяется при воздействии на кислоты активными металлами. Во второй половине восемнадцатого века Г. Кавендишу удалось собрать и проанализировать этот газ, дав ему название «горючий газ».

Физические и химические свойства водорода на тот момент времени не были изучены. Только в конце восемнадцатого века А. Лавуазье удалось путем анализа установить, что получить этот газ можно путем анализа воды. Чуть позже он стал называть новый элемент hydrogene, что в переводе означает «рождающий воду». Своим современным русским названием водород обязан М. Ф. Соловьеву.

Нахождение в природе

Химические свойства водорода можно анализировать только на основании его распространенности в природе. Данный элемент присутствует в гидро- и литосфере, а также входит в состав полезных ископаемых: природного и попутного газа, торфа, нефти, угля, горючих сланцев. Сложно себе представить взрослого человека, который бы не знал о том, что водород является составной частью воды.

Кроме того, данный неметалл находится в организмах животных в виде нуклеиновых кислот, белков, углеводов, жиров. На нашей планете данный элемент встречается в свободном виде достаточно редко, пожалуй, только в природном и вулканическом газе.

В виде плазмы водород составляет примерно половину массы звезд и Солнца, кроме того, входит в состав межзвездного газа. Например, в свободном виде, а также в форме метана, аммиака этот неметалл присутствует в составе комет и даже некоторых планет.

Физические свойства

Прежде чем рассматривать химические свойства водорода, отметим, что при нормальных условиях он является газообразным веществом легче воздуха, имеющим несколько изотопных форм. Он почти нерастворим в воде, имеет высокую теплопроводность. Протий, имеющий массовое число 1, считается самой легкой его формой. Тритий, который обладает радиоактивными свойствами, образуется в природе из атмосферного азота при воздействии на него нейронов УФ-лучей.

Особенности строения молекулы

Чтобы рассмотреть химические свойства водорода, реакции, характерные для него, остановимся и на особенностях его строения. В этой двухатомной молекуле ковалентная неполярная химическая связь. Образование атомарного водорода возможно при взаимодействии активных металлов на растворы кислот. Но в таком виде этот неметалл способен существовать только незначительный временной промежуток, практически сразу же он рекомбинируется в молекулярный вид.

Химические свойства

Рассмотрим химические свойства водорода. В большей части соединений, которые образует данный химический элемент, он проявляет степень окисления +1, что делает его похожим с активными (щелочными) металлами. Основные химические свойства водорода, характеризующие его в качестве металла:

  • взаимодействие с кислородом с образованием воды;
  • реакция с галогенами, сопровождающаяся образованием галогеноводорода;
  • получение сероводорода при соединении с серой.

Ниже представлено уравнение реакций, характеризующих химические свойства водорода. Обращаем внимание на то, что в качестве неметалла (со степенью окисления -1) он выступает только в реакции с активными металлами, образуя с ними соответствующие гидриды.

Водород при обычной температуре неактивно вступает во взаимодействие с другими веществами, поэтому большая часть реакций осуществляется только после предварительного нагревания.

Остановимся подробнее на некоторых химических взаимодействиях элемента, который возглавляет периодическую систему химических элементов Менделеева.

Реакция образования воды сопровождается выделением 285,937 кДж энергии. При повышенной температуре (больше 550 градусов по Цельсия) данный процесс сопровождается сильным взрывом.

Среди тех химических свойств газообразного водорода, которые нашли существенное применение в промышленности, интерес представляет его взаимодействие с оксидами металлов. Именно путем каталитического гидрирования в современной промышленности осуществляют переработку оксидов металлов, например выделяют из железной окалины (смешанного оксида железа) чистый металл. Данный способ позволяет вести эффективную переработку металлолома.

Синтез аммиака, который предполагает взаимодействие водорода с азотом воздуха, также востребован в современной химической промышленности. Среди условий протекания этого химического взаимодействия отметим давление и температуру.

Заключение

Именно водород является малоактивным химическим веществом при обычных условиях. При повышении температуры его активность существенно возрастает. Данное вещество востребовано в органическом синтезе. Например, путем гидрирования можно восстановить кетоны до вторичных спиртов, а альдегиды превратить в первичные спирты. Кроме того, путем гидрирования можно превратить ненасыщенные углеводороды класса этилена и ацетилена в предельные соединения ряда метана. Водород по праву считают простым веществом, востребованным в современном химическом производстве.

Водород — неорганическое вещество, первый и самый легкий элемент таблицы Менделеева. Обозначается буквой H (Hydrogenium), переводится с греческого как «рождающий воду».

В природе существует три устойчивых атома водорода:
. протий — стандартный вариант атома, состоящий из протона и электрона;
. дейтерий — состоит из протона, нейтрона и электрона;
. тритий — в ядре протон и два нейтрона.

Водорода на Земле достаточно много. Если исходить из числа атомов, то его примерно 17%. Больше лишь кислорода — около 52%. И это только в коре земли и атмосфере — ученые не знают, сколько его в мантии и ядре планеты. На Земле водород находится преимущественно в связанном состоянии. Он часть воды, всех живых клеток, природного газа, нефти, угля, некоторых горных пород и минералов. В несвязанном состоянии его можно обнаружить в вулканических газах, в продуктах разложения органики.

Свойства

Самый легкий газ. Не имеет цвета, вкуса и запаха. В воде плохорастворим, хорошо — в этаноле, во многих металлах, например, в железе, титане, палладии — в одном объеме палладия может раствориться 850 объемов Н2. Не растворяется в серебре. Лучше всех газов проводит тепло. При сильном охлаждении преобразуется в очень подвижную текучую бесцветную жидкость, и далее в твердое снегообразное вещество. Интересно, что жидкое состояние элемент сохраняет в очень узком температурном диапазоне: от −252,76 до −259,2 °C. Предполагается, что твердый водород при гигантских давлениях в сотни тысяч атмосфер приобретет металлические свойства. При высоких температурах вещество проникает сквозь мельчайшие поры металлов и сплавов.

Водород — важный биогенный элемент. Образует воду, содержится во всех живых тканях, в амино- и нуклеиновых кислотах, белках, липидах, жирах, углеводах.

С точки зрения химии, водород обладает уникальной особенностью — его относят сразу к двум группам таблицы Менделеева: к щелочным металлам и галогенам. Как щелочной металл, проявляет сильные восстановительные свойства. Реагирует с фтором при обычных условиях, с хлором — под действием света, с другими неметаллами — только при нагревании или в присутствии катализаторов. Вступает в реакции с кислородом, азотом, серой, углеродом, галогенами, угарным газом и др. Образует такие важные соединения как аммиак, сероводород, углеводороды, спирты, фтороводород (фтористоводородную кислоту) и хлороводород (соляную кислоту). При взаимодействии с оксидами и галогенидами металлов восстанавливает их до металлов; это свойство используется в металлургии.

Как галоген Н2 проявляет окислительные свойства при взаимодействии с металлами.

Во Вселенной водорода 88,6%. Большей частью он содержится в звездах и межзвездном газе.

Из-за своей легкости молекулы вещества двигаются с огромными скоростями, сопоставимыми со второй космической скоростью. Благодаря этому его теплопроводность превышает теплопроводность воздуха в 7,3 раза. Из верхних частей атмосферы молекулы Н2 легко улетают в космос. Таким образом наша планета теряет 3 кг водорода каждую секунду.

Техника безопасности

Водород нетоксичен, но пожаро- и взрывоопасен. Смесь с воздухом (гремучий газ) легко взрывается от малейшей искры. Сам водород горит. Это следует учитывать при его получении для лабораторных нужд или при проведении опытов, в ходе которых выделяется водород.

Пролив жидкий водород на кожу, можно получить серьезное обморожение.

Применение

В химпроме с помощью Н2 производят аммиак , спирты, соляную кислоту, мыло, полимеры, искусственное топливо, многие орг.вещества.
. В нефтеперерабатывающей индустрии — для получения из нефти и нефтяных остатков различных производных (дизельного топлива, смазочных масел, бензинов, сжиженных газов и др.); для очистки нефтепродуктов, смазочных масел.
. В пищепроме: при изготовлении твердых маргаринов методом гидрогенизации из растительных масел; используется как газ для упаковок некоторых продуктов (добавка Е949).
. В металлургии в процессах получения металлов и сплавов. Для атомно-водородной (t пламени доходит до +4000 °С) и кислородно-водородной (до +2800 °С) резки и сварки жаростойких сталей и сплавов.
. В метеорологии веществом наполняют воздушные зонды и шары.
. Как топливо для ракет.
. Как охладитель для крупных электрогенераторов.
. В стекольной индустрии для выплавки кварцевого стекла в высокотемпературном пламени.
. В газовой хроматографии; для заполнения (жидким Н2) пузырьковых камер.
. Как хладагент в криогенных вакуумных насосах.
. Дейтерий и тритий используются в атомной энергетике и военном деле.

ОПРЕДЕЛЕНИЕ

Водород - первый элемент Периодической таблицы. Обозначение - H от латинского «hydrogenium». Расположен в первом периоде, IА группе. Относится к неметаллам. Заряд ядра равен 1.

Водород является одним из наиболее распространенных химических элементов - его доля составляет около 1% от массы всех трех оболочек земной коры (атмосферы, гидросферы и литосферы), что при пересчете на атомные проценты дает цифру 17,0.

Основное количество этого элемента находится в связанном состоянии. Так, вода содержит около 11 вес. %, глина - около 1,5% и т.д. В виде соединений с углеродом водород входит в состав нефти, горючих природных газов и всех организмов.

Водород представляет собой газ без цвета и запаха (схема строения атома представлена на рис. 1). Его температуры плавления и кипения лежат весьма низко (-259 o С и -253 o С соответственно). При температуре (-240 o С) и под давлением водород способен сжижаться, а при быстром испарении полученной жидкости переходить в твердое состояние (прозрачные кристаллы). В воде он растворим незначительно - 2:100 по объему. Характерна для водорода растворимость в некоторых металлах, например, в железе.

Рис. 1. Строение атома водорода.

Атомная и молекулярная масса водорода

ОПРЕДЕЛЕНИЕ

Относительной атомной массой элемента называют отношение массы атома данного элемента к 1/12 массы атома углерода.

Относительная атомная масса безразмерна и обозначается A r (индекс «r» — начальная буква английского слова relative, что в переводе означает «относительный»). Относительная атомная масса атомарного водорода равна 1,008 а.е.м.

Массы молекул, также как массы атомов выражаются в атомных единицах массы.

ОПРЕДЕЛЕНИЕ

Молекулярной массой вещества называется масса молекулы, выраженная в атомных единицах массы. Относительной молекулярной массой вещества называют отношение массы молекулы данного вещества к 1/12 массы атома углерода, масса которого равна 12 а.е.м.

Известно, что молекула водорода двухатомна - H 2 . Относительная молекулярная масса молекулы водорода будет равна:

M r (H 2) = 1,008 × 2 = 2,016.

Изотопы водорода

Водород имеет три изотопа: протий 1 H, дейтерий 2 Н или D и тритий 3 Н или Т. Их массовые числа равны 1, 2 и 3. Протий и дейтерий стабильны, тритий - радиоактивен (период полураспада 12,5 лет). В природных соединениях дейтерий и протий в среднем содержатся в отношении 1:6800 (по числу атомов). Тритий находится в природе в ничтожно малых количествах.

Ядро атома водорода 1 H содержит один протон. Ядра дейтерия и трития включают кроме протона один и два нейтрона.

Ионы водорода

Атом водорода может либо отдавать свой единственный электрон с образованием положительного иона (представляющего собой «голый» протон), либо присоединять один электрон, переходя в отрицательный ион, имеющий гелийную электронную конфигурацию.

Полный отрыв электрона от атома водорода требует затраты очень большой энергии ионизации:

Н + 315 ккал = Н + + е.

Вследствие этого при взаимодействии водорода с металлоидаими возникают не ионные, а лишь полярные связи.

Тенденция того или иного нейтрального атома к присоединению избыточного электрона характеризуется значением его сродства к электрону. У водорода оно выражено довольно слабо (однако это не говорит о невозможности существования такого иона водорода):

Н + е = Н — + 19 ккал.

Молекула и атом водорода

Молекула водорода состоит из двух атомов - Н 2 . Приведем некоторые свойства, характеризующие атом и молекулу водорода:

Примеры решения задач

ПРИМЕР 1

Задание Докажите, что существуют гидриды общей формулы ЭН х, содержащие 12,5% водорода.
Решение Рассчитаем массы водорода и неизвестного элемента, приняв массу образца за 100 г:

m(H) = m (ЭН х) ×w (H);

m(H) = 100 × 0,125 = 12,5 г.

m(Э) = m (ЭН х) — m(H);

m(Э) = 100 - 12,5 = 87,5 г.

Найдем количество вещества водорода и неизвестного элемента, обозначив за «х» молярную массу последнего (молярная масса водорода равна 1 г/моль):

Водород (лат. hydrogenium), Н, химический элемент, первый по порядковому номеру в периодической системе Менделеева; атомная масса 1,00797. При обычных условиях В. - газ; не имеет цвета, запаха и вкуса.

Историческая справка. В трудах химиков 16 и 17 вв. неоднократно упоминалось о выделении горючего газа при действии кислот на металлы. В 1766 Г. Кавендиш собрал и исследовал выделяющийся газ, назвав его «горючий воздух». Будучи сторонником теории флогистона , Кавендиш полагал, что этот газ и есть чистый флогистон. В 1783 А. Лавуазье путём анализа и синтеза воды доказал сложность её состава, а в 1787 определил «горючий воздух» как новый химический элемент (В.) и дал ему современное название hydrog e ne (от греч. h y d o r - вода и genn a o - рождаю), что означает «рождающий воду»; этот корень употребляется в названиях соединений В. и процессов с его участием (например, гидриды, гидрогенизация). Современное русское наименование «В.» было предложено М. Ф. Соловьёвым в 1824.

Распространённость в природе . В. широко распространён в природе, его содержание в земной коре (литосфера и гидросфера) составляет по массе 1%, а по числу атомов 16%. В. входит в состав самого распространённого вещества на Земле - воды (11,19% В. по массе), в состав соединений, слагающих угли, нефть, природные газы, глины, а также организмы животных и растений (т. е. в состав белков, нуклеиновых кислот, жиров, углеводов и др.). В свободном состоянии В. встречается крайне редко, в небольших количествах он содержится в вулканических и других природных газах. Ничтожные количества свободного В. (0,0001% по числу атомов) присутствуют в атмосфере. В околоземном пространстве В. в виде потока протонов образует внутренний («протонный») радиационный пояс Земли . В космосе В. является самым распространённым элементом. В виде плазмы он составляет около половины массы Солнца и большинства звёзд, основную часть газов межзвёздной среды и газовых туманностей. В. присутствует в атмосфере ряда планет и в кометах в виде свободного h 2 , метана ch 4 , аммиака nh 3 , воды h 2 o, радикалов типа ch, nh, oh, sih, ph и т.д. В виде потока протонов В. входит в состав корпускулярного излучения Солнца и космических лучей.

Изотопы, атом и молекула. Обыкновенный В. состоит из смеси 2 устойчивых изотопов: лёгкого В., или протия (1 h), и тяжёлого В., или дейтерия (2 h, или d). В природных соединениях В. на 1 атом 2 h приходится в среднем 6800 атомов 1 h. Искусственно получен радиоактивный изотоп - сверхтяжёлый В., или тритий (3 h, или Т), с мягким?-излучением и периодом полураспада t 1/2 = 12,262 года. В природе тритий образуется, например, из атмосферного азота под действием нейтронов космических лучей; в атмосфере его ничтожно мало (4 · 10 -15 % от общего числа атомов В.). Получен крайне неустойчивый изотоп 4 h. Массовые числа изотопов 1 h, 2 h, 3 h и 4 h, соответственно 1,2, 3 и 4, указывают на то, что ядро атома протия содержит только 1 протон, дейтерия - 1 протон и 1 нейтрон, трития - 1 протон и 2 нейтрона, 4 h - 1 протон и 3 нейтрона. Большое различие масс изотопов В. обусловливает более заметное различие их физических и химических свойств, чем в случае изотопов других элементов.

Атом В. имеет наиболее простое строение среди атомов всех других элементов: он состоит из ядра и одного электрона. Энергия связи электрона с ядром (потенциал ионизации) составляет 13,595 эв . Нейтральный атом В. может присоединять и второй электрон, образуя отрицательный ион Н - ; при этом энергия связи второго электрона с нейтральным атомом (сродство к электрону) составляет 0,78 эв . Квантовая механика позволяет рассчитать все возможные энергетические уровни атома В., а следовательно, дать полную интерпретацию его атомного спектра . Атом В. используется как модельный в квантовомеханических расчётах энергетических уровней других, более сложных атомов. Молекула В. h 2 состоит из двух атомов, соединённых ковалентной химической связью. Энергия диссоциации (т. е. распада на атомы) составляет 4,776 эв (1 эв = 1,60210 · 10 -19 дж ). Межатомное расстояние при равновесном положении ядер равно 0,7414 · a . При высоких температурах молекулярный В. диссоциирует на атомы (степень диссоциации при 2000°С 0,0013, при 5000°С 0,95). Атомарный В. образуется также в различных химических реакциях (например, действием zn на соляную кислоту). Однако существование В. в атомарном состоянии длится лишь короткое время, атомы рекомбинируют в молекулы h 2 .

Физические и химические свойства . В. - легчайшее из всех известных веществ (в 14,4 раза легче воздуха), плотность 0,0899 г/л при 0°С и 1 атм . В. кипит (сжижается) и плавится (затвердевает) соответственно при -252,6°С и -259,1°С (только гелий имеет более низкие температуры плавления и кипения). Критическая температура В. очень низка (-240°С), поэтому его сжижение сопряжено с большими трудностями; критическое давление 12,8 кгс/см 2 (12,8 атм ), критическая плотность 0,0312 г/см 3 . Из всех газов В. обладает наибольшей теплопроводностью, равной при 0°С и 1 атм 0,174 вт/ (м · К ), т. е. 4,16 · 0 -4 кал/ (с · см · °С ). Удельная теплоёмкость В. при 0°С и 1 атм С р 14,208 · 10 3 дж/ (кг · К ), т. е. 3,394 кал/ (г · °С ). В. мало растворим в воде (0,0182 мл/г при 20°С и 1 атм ), но хорошо - во многих металлах (ni, pt, pd и др.), особенно в палладии (850 объёмов на 1 объём pd). С растворимостью В. в металлах связана его способность диффундировать через них; диффузия через углеродистый сплав (например, сталь) иногда сопровождается разрушением сплава вследствие взаимодействия В. с углеродом (так называемая декарбонизация). Жидкий В. очень лёгок (плотность при -253°С 0,0708 г/см 3) и текуч (вязкость при - 253°С 13,8 спуаз ).

В большинстве соединений В. проявляет валентность (точнее, степень окисления) +1, подобно натрию и другим щелочным металлам; обычно он и рассматривается как аналог этих металлов, возглавляющий 1 гр. системы Менделеева. Однако в гидридах металлов ион В. заряжен отрицательно (степень окисления -1), т. е. гидрид na + h - построен подобно хлориду na + cl - . Этот и некоторые другие факты (близость физических свойств В. и галогенов, способность галогенов замещать В. в органических соединениях) дают основание относить В. также и к vii группе периодической системы. При обычных условиях молекулярный В. сравнительно мало активен, непосредственно соединяясь лишь с наиболее активными из неметаллов (с фтором, а на свету и с хлором). Однако при нагревании он вступает в реакции со многими элементами. Атомарный В. обладает повышенной химической активностью по сравнению с молекулярным. С кислородом В. образует воду: h 2 + 1 / 2 o 2 = h 2 o с выделением 285,937 · 10 3 дж/моль , т. е. 68,3174 ккал/моль тепла (при 25°С и 1 атм ). При обычных температурах реакция протекает крайне медленно, выше 550°С - со взрывом. Пределы взрывоопасности водородо-кислородной смеси составляют (по объёму) от 4 до 94% h 2 , а водородо-воздушной смеси - от 4 до 74% h 2 (смесь 2 объёмов h 2 и 1 объёма О 2 называется гремучим газом ). В. используется для восстановления многих металлов, так как отнимает кислород у их окислов:

cuo +Н 2 = cu + h 2 o,

fe 3 o 4 + 4h 2 = 3fe + 4h 2 o, и т.д.

С галогенами В. образует галогеноводороды, например:

h 2 + cl 2 = 2hcl.

При этом с фтором В. взрывается (даже в темноте и при -252°С), с хлором и бромом реагирует лишь при освещении или нагревании, а с иодом только при нагревании. С азотом В. взаимодействует с образованием аммиака: 3h 2 + n 2 = 2nh 3 лишь на катализаторе и при повышенных температурах и давлениях. При нагревании В. энергично реагирует с серой: h 2 + s = h 2 s (сероводород), значительно труднее с селеном и теллуром. С чистым углеродом В. может реагировать без катализатора только при высоких температурах: 2h 2 + С (аморфный) = ch 4 (метан). В. непосредственно реагирует с некоторыми металлами (щелочными, щёлочноземельными и др.), образуя гидриды: h 2 + 2li = 2lih. Важное практическое значение имеют реакции В. с окисью углерода, при которых образуются в зависимости от температуры, давления и катализатора различные органические соединения, например hcho, ch 3 oh и др. Ненасыщенные углеводороды реагируют с В., переходя в насыщенные, например:

c n h 2 n + h 2 = c n h 2 n +2.

Роль В. и его соединений в химии исключительно велика. В. обусловливает кислотные свойства так называемых протонных кислот. В. склонен образовывать с некоторыми элементами так называемую водородную связь , оказывающую определяющее влияние на свойства многих органических и неорганических соединений.

Получение . Основные виды сырья для промышленного получения В. - газы природные горючие , коксовый газ (см. Коксохимия ) и газы нефтепереработки , а также продукты газификации твёрдых и жидких топлив (главным образом угля). В. получают также из воды электролизом (в местах с дешёвой электроэнергией). Важнейшими способами производства В. из природного газа являются каталитическое взаимодействие углеводородов, главным образом метана, с водяным паром (конверсия): ch 4 + h 2 o = co + 3h 2 , и неполное окисление углеводородов кислородом: ch 4 + 1 / 2 o 2 = co + 2h 2 . Образующаяся окись углерода также подвергается конверсии: co + h 2 o = co 2 + h 2 . В., добываемый из природного газа, самый дешёвый. Очень распространён способ производства В. из водяного и паровоздушного газов, получаемых газификацией угля. Процесс основан на конверсии окиси углерода. Водяной газ содержит до 50% h 2 и 40% co; в паровоздушном газе, кроме h 2 и co, имеется значительное количество n 2 , который используется вместе с получаемым В. для синтеза nh 3 . Из коксового газа и газов нефтепереработки В. выделяют путём удаления остальных компонентов газовой смеси, сжижаемых более легко, чем В., при глубоком охлаждении. Электролиз воды ведут постоянным током, пропуская его через раствор koh или naoh (кислоты не используются во избежание коррозии стальной аппаратуры). В лабораториях В. получают электролизом воды, а также по реакции между цинком и соляной кислотой. Однако чаще используют готовый заводской В. в баллонах.

Применение . В промышленном масштабе В. стали получать в конце 18 в. для наполнения воздушных шаров. В настоящее время В. широко применяют в химической промышленности, главным образом для производства аммиака . Крупным потребителем В. является также производство метилового и других спиртов, синтетического бензина (синтина) и других продуктов, получаемых синтезом из В. и окиси углерода. В. применяют для гидрогенизации твёрдого и тяжёлого жидкого топлив, жиров и др., для синтеза hcl, для гидроочистки нефтепродуктов, в сварке и резке металлов кислородо-водородным пламенем (температура до 2800°С) и в атомно-водородной сварке (до 4000°С). Очень важное применение в атомной энергетике нашли изотопы В. - дейтерий и тритий.

Лит.: Некрасов Б. В., Курс общей химии, 14 изд., М., 1962; Реми Г., Курс неорганической химии, пер. с нем., т. 1, М., 1963; Егоров А. П., Шерешевский Д. И., Шманенков И. В., Общая химическая технология неорганических веществ, 4 изд., М., 1964; Общая химическая технология. Под ред. С. И. Вольфковича, т. 1, М., 1952; Лебедев В. В., Водород, его получение и использование, М., 1958; Налбандян А. Б., Воеводский В. В., Механизм окисления и горения водорода, М. - Л., 1949; Краткая химическая энциклопедия, т. 1, М., 1961, с. 619-24.

Водород H — самый распространённый элемент во Вселенной (около 75 % по массе), на Земле — девятый по распространенности. Наиболее важным природным соединением водорода является вода.
Водород занимает первое место в периодической системе (Z = 1). Он имеет простейшее строение атома: ядро атома – 1 протон, окружено электронным облаком, состоящим из 1 электрона.
В одних условиях водород проявляет металлические свойства (отдает электрон), в других - неметаллические (принимает электрон).
В природе встречаются изотопы водорода: 1Н — протий (ядро состоит из одного протона), 2Н — дейтерий (D — ядро состоит из одного протона и одного нейтрона), 3Н — тритий (Т — ядро состоит из одного протона и двух нейтронов).

Простое вещество водород

Молекула водорода состоит из двух атомов, связанных между собой ковалентной неполярной связью.
Физические свойства. Водород — бесцветный нетоксичный газ без запаха и вкуса. Молекула водорода не полярна. Поэтому силы межмолекулярного взаимодействия в газообразном водороде малы. Это проявляется в низких температурах кипения (-252,6 0С) и плавления (-259,2 0С).
Водород легче воздуха, D (по воздуху) = 0,069; незначительно растворяется в воде (в 100 объемах H2O растворяется 2 объема H2). Поэтому водород при его получении в лаборатории можно собирать методами вытеснения воздуха или воды.

Получение водорода

В лаборатории :

1.Действие разбавленных кислот на металлы:
Zn +2HCl → ZnCl 2 +H 2

2.Взаимодействие щелочных и щ-з металлов с водой:
Ca +2H 2 O → Ca(OH) 2 +H 2

3.Гидролиз гидридов: гидриды металлов легко разлагаются водой с образованием соответствующей щелочи и водорода:
NaH +H 2 O → NaOH +H 2
СаH 2 + 2Н 2 О = Са(ОН) 2 + 2Н 2

4.Действие щелочей на цинк или алюминий или кремний:
2Al +2NaOH +6H 2 O → 2Na +3H 2
Zn +2KOH +2H 2 O → K 2 +H 2
Si + 2NaOH + H 2 O → Na 2 SiO 3 + 2H 2

5. Электролиз воды. Для увеличения электрической проводимости воды к ней добавляют электролит, например NаОН, Н 2 SO 4 или Na 2 SO 4 . На катоде образуется 2 объема водорода, на аноде - 1 объем кислорода.
2H 2 O → 2H 2 +О 2

Промышленное получение водорода

1. Конверсия метана с водяным паром, Ni 800 °С (самый дешевый):
CH 4 + H 2 O → CO + 3 H 2
CO + H 2 O → CO 2 + H 2

В сумме:
CH 4 + 2 H 2 O → 4 H 2 + CO 2

2. Пары воды через раскаленный кокс при 1000 о С:
С + H 2 O → CO + H 2
CO +H 2 O → CO 2 + H 2

Образующийся оксид углерода (IV) поглощается водой, этим способом получают 50 % промышленного водорода.

3. Нагреванием метана до 350°С в присутствии железного или нике­левого катализатора:
СH 4 → С + 2Н 2

4. Электролизом водных растворов KCl или NaCl, как побочный продукт:
2Н 2 О + 2NaCl→ Cl 2 + H 2 + 2NaOH

Химические свойства водорода

  • В соединениях водород всегда одновалентен. Для него характерна степень окисления +1, но в гидридах металлов она равна -1.
  • Молекула водорода состоит из двух атомов. Возникновение связи между ними объясняется образованием обобщен­ной пары электронов Н:Н или Н 2
  • Благодаря этому обобщению электронов молекула Н 2 более энергети­чески устойчива, чем его отдельные атомы. Чтобы разорвать в 1 моль водорода молекулы на атомы, необходимо затратить энергию 436 кДж: Н 2 = 2Н, ∆H° = 436 кДж/моль
  • Этим объясняется сравнительно небольшая активность молекулярного водорода при обычной температуре.
  • Со многими неметаллами водород образует газообразные соедине­ния типа RН 4 , RН 3 , RН 2 , RН.

1) С галогенами образует галогеноводороды:
Н 2 + Cl 2 → 2НСl.
При этом с фтором — взрывается, с хлором и бромом реагирует лишь при освещении или нагревании, а с йодом только при нагревании.

2) С кислородом:
2Н 2 + О 2 → 2Н 2 О
с выделением тепла. При обычных температурах реакция протекает медленно, выше 550°С — со взрывом. Смесь 2 объемов Н 2 и 1 объема О 2 называется гремучим газом.

3) При нагревании энергично реагирует с серойь(значительно труднее с селеном и теллуром):
Н 2 + S → H 2 S (сероводород),

4) С азотом с образованием аммиака лишь на катализаторе и при повышенных температурах и давлениях:
ЗН 2 + N 2 → 2NН 3

5) С углеродом при высоких температурах:
2Н 2 + С → СН 4 (метан)

6) С щелочными и щелочноземельными металлами образует гидриды (водород – окислитель):
Н 2 + 2Li → 2LiH
в гидридах металлов ион водорода заряжен отрицательно (степень окисления -1), то есть гидрид Na + H — построен подобно хлориду Na + Cl —

Со сложными веществами:

7) С оксидами металлов (используется для восстановления металлов):
CuO + H 2 → Cu + H 2 O
Fe 3 O 4 + 4H 2 → 3Fe + 4Н 2 О

8) с оксидом углерода (II):
CO + 2H 2 → CH 3 OH
Синтез — газ (смесь водорода и угарного газа) имеет важное практическое значение, тк в зависимости от температуры, давления и катализатора образуются различные органические соединения, например НСНО, СН 3 ОН и другие.

9)Ненасыщенные углеводороды реагируют с водородом, переходя в насыщенные:
С n Н 2n + Н 2 → С n Н 2n+2 .