Чем сложена земная кора. Строение океанической земной коры

Земная кора - твердый поверхностный слой нашей планеты. Она образовалась миллиарды лет назад и постоянно изменяет свой вид под влиянием внешних и внутренних сил. Часть её скрыта под водой, другая - образует сушу. Земная кора состоит из различных химических веществ. Давайте узнаем из каких.

Поверхность планеты

Спустя сотни миллионов лет после возникновения Земли, её внешний слой из кипящих расплавленных пород начал остывать и образовал земную кору. Год от года поверхность изменялась. На ней появлялись трещины, горы, вулканы. Ветер сглаживал их, чтобы через время они появились вновь, но уже в других местах.

Благодаря внешним и внутренним твёрдый слой планеты неоднороден. С точки зрения структуры, можно выделить такие элементы земной коры:

  • геосинклинали или складчатые области;
  • платформы;
  • краевые разломы и прогибы.

Платформы представляют собой обширные малоподвижные участки. Их верхний слой (до глубины в 3-4 км) покрывают осадочные породы, которые залегают горизонтальными слоями. Нижний уровень (фундамент) сильно смят. Он сложен метаморфозными породами и может содержать магматические вкрапления.

Геосинклинали - это тектонически активные участки, где происходят процессы горообразования. Они возникают в местах соединения океанического дна и материковой платформы, или в прогибе дна океана между материками.

Если горы образуются близко к границе платформы, могут возникать краевые разломы и прогибы. Они достигают до 17 километров в глубину и тянутся вдоль горного образования. Со временем здесь скапливаются осадочные породы и образуются месторождения полезных ископаемых (нефти, каменные и калийные соли и т. д.).

Состав коры

Масса коры составляет 2,8·1019 тонн. Это всего лишь 0,473 % от массы всей планеты. Содержание в ней веществ не такое разнообразное, как в мантии. Её формируют базальты, граниты и осадочные породы.

На 99,8 % земная кора состоит из восемнадцати элементов. На остальные приходится только 0,2 %. Самыми распространёнными являются кислород и кремний, которые составляют основное количество массы. Кроме них, кора богата алюминием, железом, калием, кальцием, натрием, углеродом, водородом, фосфором, хлором, азотом, фтором и т. д. Содержание этих веществ видно в таблице:

Название элемента

Кислород

Алюминий

Марганец

Редчайшим элементом считается астат - крайне неустойчивое и ядовитое вещество. К редким также относится теллур, индий, таллий. Часто они рассеяны и не содержат больших скоплений в одном месте.

Континентальная кора

Материковая или континентальная кора - это то, что мы обычно называем сушей. Она довольно стара и покрывает около 40 % всей планеты. Многие её участки достигают возраста от 2 до 4,4 миллиардов лет.

Материковая земная кора состоит из трёх слоёв. Сверху её покрывает прерывистый осадочный чехол. Породы в нем залегают слоями или пластами, так как формируются вследствие спрессовывания и уплотнения осадков солей или остатков микроорганизмов.

Нижний и более древний слой представлен гранитами и гнейсами. Они не всегда скрыты под осадочными породами. В некоторых местах они выходят на поверхность в виде кристаллических щитов.

Самый нижний слой состоит из метаморфических пород наподобии базальтов и гранулитов. Базальтовый слой может достигать 20-35 километров.

Океаническая кора

Часть земной коры, скрытая под водами Мирового океана, называется океанической. Она тоньше и моложе континентальной. По возрасту кора не достигает и двухсот миллионов лет, а её толщина составляет примерно 7 километров.

Материковая земная кора состоит из осадочных пород из глубоководных остатков. Ниже располагается базальтовый слой толщиной 5-6 километров. Под ним начинается мантия, представленная здесь в основном перидотитами и дунитами.

Каждые сто миллионов лет кора обновляется. Она поглощается в зонах субдукции и формируется вновь в области срединно-океанических хребтов, при помощи выходящих наружу минералов.

Изучение внутреннего строения планет, в том числе нашей Земли — чрезвычайно сложная задача. Мы не можем физически «пробурить» земную кору вплоть до ядра планеты, поэтому все знания полученные нами на данный момент — это знания полученные «на ощупь», причем самым буквальным образом.

Как работает сейсморазведка на примере разведки нефтяных месторождений. «Прозваниваем» землю и «слушаем», что принесет нам отраженный сигнал

Дело в том, что наиболее простой и надежный способ узнать что же находится под поверхностью планеты и входит в состав её коры — это изучении скорости распространения сейсмических волн в недрах планеты.

Известно, что скорость продольных сейсмических волн возрастает в более плотных средах и напротив, уменьшается в рыхлых грунтах. Соответственно, зная параметры разных типов породы и имея расчетные данные о давлении и т.п., «слушая» полученный ответ, можно понять через какие слои земной коры прошел сейсмический сигнал и как глубоко они находятся под поверхностью.

Изучение строения земной коры с помощью сейсмоволн

Сейсмические колебания могут быть вызваны источни­ками двух видов: естественными и искусственными . Естествен­ными источниками колебаний являются землетрясения, волны которых несут необходимую информацию о плотности по­род, сквозь которые они проникают.

Арсенал искусственных источников колебаний более обширен, но в первую очередь ис­кусственные колебания вызываются обыкновенным взрывом, однако есть и более «тонкие» способы работы — генераторы направленных импульсов, сейсмовибраторов и т.п.

Проведением взрывных работ и изучением скоростей сейсмических волн занимается сейсморазведка - одна из важнейших отраслей современной геофизики.

Что же дало изучение сейсмических волн внутри Земли? Анализ их распространения выявил несколько скачков изменения ско­рости при прохождении через недра планеты.

Земная кора

Первый скачок, при котором скорости возрастают с 6,7 до 8,1 км/с, как счи­тают геологи, регистрирует подошву земной коры . Эта по­верхность располагается в разных местах планеты на различных уровнях, от 5 до 75 км. Граница земной коры и нижележащей оболочки - мантии, получила название «поверхности Мохоровичича» , по имени впервые установившего ее югославского ученого А. Мохо­ровичича.

Мантия

Мантия залегает на глубинах до 2 900 км и делится на две части: верхнюю и нижнюю. Граница между верхней и нижней мантией также фиксируется по скачку скорости рас­пространения продольных сейсмических волн (11,5 км/с) и располагается на глубинах от 400 до 900 км.

Верхняя ман­тия имеет сложное строение. В ее верхней части имеется слой расположенный на глубинах 100-200 км, где проис­ходит затухание поперечных сейсмических волн на 0,2- 0,3 км/с, а скорости продольных волн, по существу, не ме­няются. Этот слой назван волноводом . Его толщина обычно равняется 200-300 км.

Часть верхней мантии и кора, залегаю­щие над волноводом, называются литосферой , а сам слой пониженных скоростей - астеносферой .

Таким образом, литосфера представляет собой жесткую твердую оболочку, подстилаемую пластичной астеносфе­рой. Предполагается, что в астеносфере возникают процес­сы, вызывающие движение литосферы.

Внутреннее строение нашей планеты

Ядро Земли

В подошве мантии происходит резкое уменьшение ско­рости распространения продольных волн с 13,9 до 7,6 км/с. На этом уровне лежит граница между мантией и ядром Зем­ли , глубже которой поперечные сейсмические волны уже не распространяются.

Радиус ядра достигает 3500 км, его объем: 16% объема планеты, а масса: 31% массы Земли.

Многие ученые считают, что ядро находится в расплавленном состоя­нии. Его внешняя часть характеризуется резко пониженными значениями скоростей продольных волн, во внутренней ча­сти (радиусом в 1200 км) скорости сейсмических волн вновь возрастают до 11 км/с. Плотность пород ядра равна 11 г/см 3 , и она обуславливается наличием тяжелых элементов. Таким тяжелым элементом может быть железо. Вероятнее всего, железо является составной частью ядра, так как ядро чисто железного или железо-никелевого состава должно иметь плотность, на 8-15% превышающую существующую плот­ность ядра. Поэтому к железу в ядре, по-видимому, при­соединены кислород, сера, углерод и водород.

Геохимический метод изучения строения пла­нет

Имеется еще один путь изучения глубинного строения пла­нет - геохимический способ . Выделение различных оболочек Земли и других планет земной группы по физическим параметрам находит достаточно четкое геохимическое подтверждение, основанное на теории гетерогенной аккреции, согласно кото­рой состав ядер планет и их внешних оболочек в основной своей части является исходно различным и зависит от само­го раннего этапа их развития.

В результате этого процесса в ядре концентрировались наиболее тяжелые (железо-никелевые ) компоненты, а во внешних оболочках - более легкие сили­катные (хондритовые ), обогащенные в верхней мантии лету­чими веществами и водой.

Важнейшей особенностью планет земной группы ( , Земля, ) явля­ется то, что их внешняя оболочка, так называемая кора , со­стоит из двух типов вещества: «материкового » - полевошпа­тового и «океанического » - базальтового.

Материковая (континентальная) кора Земли

Материковая (континентальная) кора Земли сложена гранитами или породами, близкими им по составу, т. е. породами с большим количеством полевых шпатов. Образование «гра­нитного» слоя Земли обусловлено преобразованием более древних осадков в процессе гранитизации.

Гранитный слой надо рассматривать как специ­фическую оболочку коры Земли - единственной планеты, на которой получили широкое развитие процессы дифферен­циации вещества с участием воды и имеющей гидросферу, кислородную атмосферу и биосферу. На Луне и, вероятно, на планетах земной группы континентальная кора слагается габбро-анортозитами - породами, состоящими из большого количества полевого шпата, правда, несколько другого соста­ва, чем в гранитах.

Этими породами сложены древнейшие (4,0-4,5 млрд. лет) поверхности планет.

Океаническая (базальтовая) кора Земли

Океаническая (базальтовая) кора Земли образована в ре­зультате растяжения и связана с зонами глубинных разло­мов, обусловивших проникновение к базальтовым очагам верхней мантии. Базальтовый вулканизм накладывается на ра­нее сформировавшуюся континентальную кору и является от­носительно более молодым геологическим образованием.

Проявления базаль­тового вулканизма на всех планетах земного типа, по-видимому, аналогичны. Широкое развитие базальтовых «морей» на Луне, Марсе, Меркурии, очевидно, связано с растяжени­ем и образованием вследствие этого процесса зон проницае­мости, по которым базальтовые расплавы мантии устрем­лялись к поверхности. Этот механизм проявления базальто­вого вулканизма является более или менее сходным для всех планет земной группы.

Спутница Земли - Луна также имеет оболочечное строе­ние, в целом повторяющее земное, хотя и имеющее разительно отличие по составу.

Тепловой поток Земли. Горячее всего в районе разломов земной коры, а холоднее — в районах древних материковых плит

Метод измерения теплового потока для изучения строения пла­нет

Еще один путь изучения глубинного строения Земли - это изучение ее теплового потока. Известно, что Земля, го­рячая изнутри, отдает свое тепло. О нагреве глубоких гори­зонтов свидетельствуют извержения вулканов, гейзеры, го­рячие источники. Тепло - главный энергетический источник Земли.

Прирост температуры с углублением от поверхно­сти Земли в среднем составляет около 15° С на 1 км. Это значит, что на границе литосферы и астеносферы, располо­женной примерно на глубине 100 км, температура должна быть близкой к 1500° С. Установлено, что при такой темпера­туре происходит плавление базальтов. Это означает, что астеносферная оболочка может служить источником магмы ба­зальтового состава.

С глубиной изменение температуры про­исходит по более сложному закону и находится в зависи­мости от изменения давления. Согласно расчетным данным, на глубине 400 км температура не превышает 1600° С и на границе ядра и мантии оценивается в 2500-5000° С.

Установлено, что выделение тепла происходит постоян­но по всей поверхности планеты. Тепло - важнейший физи­ческий параметр. От степени нагрева горных пород зависят некоторые их свойства: вязкость, электропроводность, магнитность, фазовое состояние. Поэтому по термическому состоянию можно судить о глубинном строении Земли.

Изме­рение температуры нашей планеты на большой глубине - задача технически сложная, так как измерениям доступны лишь первые километры земной коры. Однако внутренняя температура Земли может быть изучена косвенным путем при измерениях теплового потока.

Несмотря на то, что основным источ­ником тепла на Земле является Солнце, суммарная мощность теплового потока нашей планеты превышает в 30 раз мощность всех электростанций Земли.

Измерения показали, что средний тепловой поток на кон­тинентах и в океанах одинаков. Этот результат объясняется тем, что в океанах большая часть тепла (до 90%) поступает из мантии, где интенсивнее происходит процесс переноса вещества движущимися потоками - конвекцией .

Конвек­ция - процесс, при котором разогретая жидкость расширяет­ся, становясь легче, и поднимается, а более холодные слои опускаются. Поскольку мантийное вещество ближе по сво­ему состоянию к твердому телу, конвекция в нем протека­ет в особых условиях, при невысоких скоростях течения ма­териала.

Какова же тепловая история нашей планеты? Ее пер­воначальный разогрев, вероятно, связан с теплом, образован­ным при соударении частиц и их уплотнении в собственном поле силы тяжести. Затем тепло явилось результатом радио­активного распада. Под воздействием тепла возникла слои­стая структура Земли и планет земной группы.

Радиоактив­ное тепло в Земле выделяется и сейчас. Существует гипоте­за, согласно которой на границе расплавленного ядра Земли продолжаются и поныне процессы расщепления вещества с выделением огромного количества тепловой энергии, разо­гревающей мантию.

Земная кора в научном понимании представляет собой самую верхнюю и твердую геологическую часть оболочки нашей планеты.

Научные исследования позволяют изучить ее досконально. Этому способствуют многократные бурения скважин как на континентах, так и на океанском дне. Строение земли и земной коры на различных участках планеты отличаются и и по составу, и по характеристикам. Верхней границей земной коры является видимый рельеф, а нижней - зона разделения двух сред, которая также известна как поверхность Мохоровичича. Часто ее называют просто "граница М". Это наименование она получила благодаря хорватскому сейсмологу Мохоровичичу А. Он долгие годы наблюдал за скоростью сейсмических движений в зависимости от уровня глубины. В 1909 году он установил наличие разницы между земной корой и раскаленной мантией Земли. Граница М пролегает на том уровне, где скорость сейсмических волн повышается с 7.4 до 8.0 км/с.

Химический состав Земли

Изучая оболочки нашей планеты, ученые делали интересные и даже потрясающие выводы. Особенности строения земной коры делают ее схожей с такими же участками на Марсе и Венере. Более чем 90 % составляющих элементов ее представлены кислородом, кремнием, железом, алюминием, кальцием, калием, магнием, натрием. Сочетаясь между собой в различных комбинациях, они образуют однородные физические тела - минералы. Они могут войти в состав горных пород в разных концентрациях. Строение земной коры весьма неоднородно. Так, горные породы в обобщенном виде представляют собой агрегаты более-менее постоянного химического состава. Это самостоятельные геологические тела. Под ними понимается четко очерченная область земной коры, имеющая в своих границах одинаковое происхождение, возраст.

Горные породы по группам

1. Магматические. Название говорит само за себя. Они возникают из остывшей магмы, вытекающей из жерла древних вулканов. Строение этих пород напрямую зависит от скорости застывания лавы. Чем она больше, тем меньше кристаллы вещества. Гранит, например, сформировался в толще земной коры, а базальт появился в результате постепенного излияния магмы на ее поверхность. Многообразие таких пород довольно велико. Рассматривая строение земной коры, мы видим, что она состоит из магматических минералов на 60 %.

2. Осадочные. Это породы, которые стали результатом постепенного отложения на суше и дне океана обломков тех или иных минералов. Это могут быть как рыхлые компоненты (песок, галька), сцементированные (песчаник), остатки микроорганизмов (каменный уголь, известняк), продукты химических реакций (калийная соль). Они составляют до 75 % всей земной коры на материках.
По физиологическому способу образования осадочные породы делятся на:

  • Обломочные. Это остатки различных горных пород. Они разрушались под воздействием природных факторов (землетрясение, тайфун, цунами). К ним можно отнести песок, гальку, гравий, щебень, глину.
  • Химические. Они постепенно образуются из водных растворов тех или иных минеральных веществ (соли).
  • Органические или биогенные. Состоят из останков животных или растений. Это горючие сланцы, газ, нефть, уголь, известняк, фосфориты, мел.

3. Метаморфические породы. В них могут превращаться другие компоненты. Это происходит под воздействием изменяющейся температуры, большого давления, растворов или газов. Например, из известняка можно получить мрамор, из гранита - гнейс, из песка - кварцит.

Минералы и горные породы, которые человечество активно использует в своей жизнедеятельности, называются полезными ископаемыми. Что они собой представляют?

Это природные минеральные образования, которые влияют на строение земли и земной коры. Они могут использоваться в сельском хозяйстве и промышленности как в естественном виде, так и подвергаясь переработке.

Виды полезных минералов. Их классификация

В зависимости от физического состояния и агрегации, полезные ископаемые можно разделить на категории:

  1. Твердые (руда, мрамор, уголь).
  2. Жидкие (минеральная вода, нефть).
  3. Газообразные (метан).

Характеристики отдельных видов полезных ископаемых

По составу и особенностям применения различают:

  1. Горючие (уголь, нефть, газ).
  2. Рудные. Они включают радиоактивные (радий, уран) и благородные металлы (серебро, золото, платина). Есть руды черных (железо, марганец, хром) и цветных металлов (медь, олово, цинк, алюминий).
  3. Нерудные полезные ископаемые играют существенную роль в таком понятии, как строение земной коры. География их обширна. Это неметаллические и негорючие горные породы. Это строительные материалы (песок, гравий, глина) и химические вещества (сера, фосфаты, калийные соли). Отдельный раздел посвящен драгоценным и поделочным камням.

Распределение полезных ископаемых по нашей планете напрямую зависит от внешних факторов и геологических закономерностей.

Так, топливные полезные ископаемые в первую очередь добываются в нефтегазоносных и угольных бассейнах. Они имеют осадочное происхождение и формируются на осадочных чехлах платформ. Нефть и уголь крайне редко залегают вместе.

Рудные полезные ископаемые чаще всего соответствуют фундаменту, выступам и складчатым областям платформенных плит. В таких местах они могут создавать огромные по протяженности пояса.

Ядро


Земная оболочка, как известно, многослойна. Ядро располагается в самом центре, а его радиус приблизительно равен 3 500 км. Его температура гораздо выше, чем у Солнца и составляет около 10000 К. Точных данных о химическом составе ядра не получено, но предположительно оно состоит из никеля и железа.

Внешнее ядро находится в расплавленном состоянии и имеет еще большую мощность, чем внутреннее. Последнее подвергается колоссальному давлению. Вещества, из которых оно состоит, находятся в постоянном твердом состоянии.

Мантия

Геосфера Земли окружает ядро и составляет около 83 процентов от всей оболочки нашей планеты. Нижняя граница мантии находится на огромной глубине почти 3000 км. Данную оболочку принято условно разделять на менее пластичную и плотную верхнюю часть (именно из нее образуется магма) и на нижнюю кристаллическую, ширина которой составляет 2000 километров.

Состав и строение земной коры

Для того чтобы говорить о том, какие элементы входят в состав литосферы, нужно дать некоторые понятия.

Земная кора - это самая внешняя оболочка литосферы. Ее плотность меньше в два раза по сравнению со средней плотностью планеты.

От мантии земная кора отделена границей М, о которой уже говорилось выше. Так как процессы, происходящие на обоих участках, взаимно влияют друг на друга, их симбиоз принято называть литосферой. Это означает "каменная оболочка". Ее мощность колеблется в пределах 50-200 километров.

Ниже литосферы расположена астеносфера, которая обладает менее плотной и вязкой консистенцией. Ее температура составляет около 1200 градусов. Уникальной особенностью астеносферы является возможность нарушать свои границы и проникать в литосферу. Она является источником вулканизма. Здесь находятся расплавленные очаги магмы, которая внедряется в земную кору и изливается на поверхность. Изучая эти процессы, ученые смогли сделать много удивительных открытий. Именно так изучалось строение земной коры. Литосфера была сформирована много тысяч лет назад, но и сейчас в ней происходят активные процессы.

Структурные элементы земной коры

По сравнению с мантией и ядром, литосфера - это жесткий, тонкий и очень хрупкий слой. Она сложена из комбинации веществ, в составе которых на сегодняшний день обнаружено более 90 химических элементов. Они распределены неоднородно. 98 процентов массы земной коры приходится на семь составляющих. Это кислород, железо, кальций, алюминий, калий, натрий и магний. Возраст самых древних пород и минералов составляет более 4.5 миллиардов лет.

Изучая внутреннее строение земной коры, можно выделить различные минералы.
Минерал - сравнительно однородное вещество, которое может находиться как внутри, так и на поверхности литосферы. Это кварц, гипс, тальк и т.д. Горные породы слагаются из одного или нескольких минералов.

Процессы, формирующие земную кору

Строение океанической земной коры

Данная часть литосферы преимущественно состоит из базальтовых пород. Строение океанической земной коры изучено не так досконально, как континентальное. Теория тектонических плит объясняет, что океаническая земная кора является относительно молодой, а самые ее последние участки можно датировать поздней юрой.
Ее толщина практически не изменяется со временем, так как она определяется количеством расплавов, выделяющихся из мантии в зоне срединно-океанических хребтов. На нее существенно влияет глубина осадочных слоев на дне океана. В наиболее объемных участках она составляет от 5 до 10 километров. Данный вид земной оболочки относится к океанической литосфере.

Континентальная кора

Литосфера взаимодействует с атмосферой, гидросферой и биосферой. В процессе синтеза они образуют самую сложную и реакционно активную оболочку Земли. Именно в тектоносфере происходят процессы, изменяющие состав и строение этих оболочек.
Литосфера на земной поверхности не однородна. Она имеет несколько слоев.

  1. Осадочный. Он в основном образуется горными породами. Здесь преобладают глины и сланцы, а также широко распространены карбонатные, вулканогенные и песчаные породы. В осадочных слоях можно встретить такие полезные ископаемые, как газ, нефть и каменный уголь. Все они имеют органическое происхождение.
  2. Гранитный слой. Он состоит из магматических и метаморфических пород, которые наиболее близки по своей природе к граниту. Этот слой встречается далеко не везде, наиболее ярко он выражен на континентах. Здесь его глубина может составлять десятки километров.
  3. Базальтовый слой образуют породы, близкие к одноименному минералу. Он более плотный, чем гранит.

Глубина и изменение температуры земной коры

Поверхностный слой прогревается солнечным теплом. Это гелиометрическая оболочка. Она испытывает сезонные колебания температуры. Средняя мощность слоя составляет около 30 м.

Ниже находится слой, еще более тонкий и хрупкий. Его температура постоянна и приблизительно равна среднегодовой, характерной для этой области планеты. В зависимости от континентального климата глубина этого слоя увеличивается.
Еще глубже в земной коре находится еще один уровень. Это геотермический слой. Строение земной коры предусматривает его наличие, а его температура определяется внутренним теплом Земли и возрастает с глубиной.

Повышение температуры происходит за счет распада радиоактивных веществ, которые входят в состав горных пород. В первую очередь это радий и уран.

Геометрический градиент - величина нарастания температуры в зависимости от степени увеличения глубины слоев. Этот параметр зависит от разных факторов. Строение и типы земной коры влияют на него, так же как и состав горных пород, уровень и условия их залегания.

Тепло земной коры является важным энергетическим источником. Его изучение очень актуально на сегодняшний день.

Характерная черта эволюции Земли — дифференциация вещества, выражением которой служит оболочечное строение нашей планеты. Литосфера, гидросфера, атмосфера, биосфера образуют основные оболочки Земли, отличающиеся химическим составом, мощностью и состоянием вещества.

Внутреннее строение Земли

Химический состав Земли (рис. 1) схож с составом других планет земной группы, например Венеры или Марса.

В целом преобладают такие элементы, как железо, кислород, кремний, магний, никель. Содержание легких элементов невелико. Средняя плотность вещества Земли 5,5 г/см 3 .

О внутреннем строении Земли достоверных данных весьма мало. Рассмотрим рис. 2. Он изображает внутреннее строение Земли. Земля состоит из земной коры, мантии и ядра.

Рис. 1. Химический состав Земли

Рис. 2. Внутреннее строение Земли

Ядро

Ядро (рис. 3) расположено в центре Земли, его радиус составляет около 3,5 тыс км. Температура ядра достигает 10 000 К, т. е. она выше, чем температура внешних слоев Солнца, а его плотность составляет 13 г/см 3 (сравните: вода — 1 г/см 3). Ядро предположительно состоит из сплавов железа и никеля.

Внешнее ядро Земли имеет большую мощность, чем внутреннее (радиус 2200 км) и находится в жидком (расплавленном) состоянии. Внутреннее ядро подвержено колоссальному давлению. Вещества, слагающие его, находятся в твердом состоянии.

Мантия

Мантия — геосфера Земли, которая окружает ядро и составляет 83 % от объема нашей планеты (см. рис. 3). Нижняя ееграница располагается на глубине 2900 км. Мантия разделяется на менее плотную и пластичную верхнюю часть (800-900 км), из которой образуется магма (в переводе с греческого означает «густая мазь»; это расплавленное вещество земных недр — смесь химических соединений и элементов, в том числе газов, в особом полужидком состоянии); и кристаллическую нижнюю, тол- шиной около 2000 км.

Рис. 3. Строение Земли: ядро, мантия и земная кора

Земная кора

Земная кора - внешняя оболочка литосферы (см. рис. 3). Ее плотность примерно в два раза меньше, чем средняя плотность Земли, — 3 г/см 3 .

От мантии земную кору отделяет граница Мохоровичича (ее часто называют границей Мохо), характеризующаяся резким нарастанием скоростей сейсмических волн. Она была установлена в 1909 г. хорватским ученым Андреем Мохоровичичем (1857- 1936).

Поскольку процессы, происходящие в самой верхней части мантии, влияют на движения вещества в земной коре, их объединяют под общим названием литосфера (каменная оболочка). Мощность литосферы колеблется от 50 до 200 км.

Ниже литосферы располагается астеносфера — менее твердая и менее вязкая, но более пластичная оболочка с температурой 1200 °С. Она может пересекать границу Мохо, внедряясь в земную кору. Астеносфера — это источник вулканизма. В ней находятся очаги расплавленной магмы, которая внедряется в земную кору или изливается на земную поверхность.

Состав и строение земной коры

По сравнению с мантией и ядром земная кора представляет собой очень тонкий, жесткий и хрупкий слой. Она сложена более легким веществом, в составе которого в настоящее время обнаружено около 90 естественных химических элементов. Эти элементы не одинаково представлены в земной коре. На семь элементов — кислород, алюминий, железо, кальций, натрий, калий и магний — приходится 98 % массы земной коры (см. рис. 5).

Своеобразные сочетания химических элементов образуют различные горные породы и минералы. Возраст самых древних из них насчитывает не менее 4,5 млрд лет.

Рис. 4. Строение земной коры

Рис. 5. Состав земной коры

Минерал — это относительно однородное по своему составу и свойствам природное тело, образующееся как в глубинах, так и на поверхности литосферы. Примерами минералов служат алмаз, кварц, гипс, тальк и др. (Характеристику физических свойств различных минералов вы найдете в приложении 2.) Состав минералов Земли приведен на рис. 6.

Рис. 6. Общий минеральный состав Земли

Горные породы состоят из минералов. Они могут слагаться как из одного, так и из нескольких минералов.

Осадочные горные породы - глина, известняк, мел, песчаник и др. — образовались путем осаждения веществ в водной среде и на суше. Они лежат пластами. Геологи называют их страницами истории Земли, так как но ним можно узнать о природных условиях, существовавших на нашей планете в давние времена.

Среди осадочных горных пород выделяют органогенные и неорганогенные (обломочные и хемогенные).

Органогенные горные породы образуются в результате накопления останков животных и растений.

Обломочные горные породы образуются в результате выветривания, псрсотложсния с помощью воды, льда или ветра продуктов разрушения ранее возникших горных пород (табл. 1).

Таблица 1. Обломочные горные породы в зависимости от размеров обломков

Название породы

Размер облом кон (частиц)

Более 50 см

5 мм — 1 см

1 мм — 5 мм

Песок и песчаники

0,005 мм — 1 мм

Менее 0,005 мм

Хемогенные горные породы формируются в результате осаждения из вод морей и озер растворенных в них веществ.

В толще земной коры из магмы образуются магматические горные породы (рис. 7), например гранит и базальт.

Осадочные и магматические породы при погружении на большие глубины под влиянием давления и высоких температур подвергаются значительным изменениям, превращаясь в метаморфические горные породы. Так, например, известняк превращается в мрамор, кварцевый песчаник — в кварцит.

В строении земной коры выделяют три слоя: осадочный, «гранитный», «базальтовый».

Осадочный слой (см. рис. 8) образован в основном осадочными горными породами. Здесь преобладают глины и глинистые сланцы, широко представлены песчаные, карбонатные и вулканогенные породы. В осадочном слое встречаются залежи таких полезных ископаемых, как каменный уголь, газ, нефть. Все они органического происхождения. Например, каменный уголь -это продукт преобразования растений древних времен. Мощность осадочного слоя колеблется в широких пределах — от полного отсутствия в некоторых районах суши до 20-25 км в глубоких впадинах.

Рис. 7. Классификация горных пород по происхождению

«Гранитный» слой состоит из метаморфических и магматических пород, близких по своим свойствам к граниту. Наиболее распространены здесь гнейсы, граниты, кристаллические сланцы и др. Встречается гранитный слой не везде, но на континентах, где он хорошо выражен, его максимальная мощность может достигать нескольких десятков километров.

«Базальтовый» слой образован горными породами, близкими к базальтам. Это метаморфизованные магматические породы, более плотные по сравнению с породами «гранитного» слоя.

Мощность и вертикальная структура земной коры различны. Выделяют несколько типов земной коры (рис. 8). Согласно наиболее простой классификации различают океаническую и материковую земную кору.

Континентальная и океаническая кора различны по толщине. Так, максимальная толщина земной коры наблюдается под горными системами. Она составляет около 70 км. Под равнинами мощность земной коры составляет 30-40 км, а под океанами она наиболее тонкая — всего 5-10 км.

Рис. 8. Типы земной коры: 1 — вода; 2- осадочный слой; 3 — переслаивание осадочных пород и базальтов; 4 — базальты и кристаллические ультраосновные породы; 5 — гранитно-метаморфический слой; 6 — гранулитово-базитовый слой; 7 — нормальная мантия; 8 — разуплотненная мантия

Различие континентальной и океанической земной коры по составу пород проявляется в том, что гранитный слой в океанической коре отсутствует. Да и базальтовый слой океанической коры весьма своеобразен. По составу пород он отличен от аналогичного слоя континентальной коры.

Граница суши и океана (нулевая отметка) не фиксирует перехода континентальной земной коры в океаническую. Замещение континентальной коры океанической происходит в океане примерно на глубине 2450 м.

Рис. 9. Строение материковой и океанической земной коры

Выделяют и переходные типы земной коры — субокеаническую и субконтинентальную.

Субокеаническая кора расположена вдоль континентальных склонов и подножий, может встречаться в окраинных и средиземных морях. Она представляет собой континентальную кору мощностью до 15-20 км.

Субконтинентальная кора расположена, например, на вулканических островных дугах.

По материалам сейсмического зондирования - скорости прохождения сейсмических волн — мы получаем данные о глубинном строении земной коры. Так, Кольская сверхглубокая скважина, впервые позволившая увидеть образцы пород с глубины более 12 км, принесла много неожиданного. Предполагалось, что на глубине 7 км должен начаться «базальтовый» слой. В действительности же он обнаружен не был, а среди горных пород преобладали гнейсы.

Изменение температуры земной коры с глубиной. Приповерхностный слой земной коры имеет температуру, определяемую солнечным теплом. Это гелиометрический слой (от греч. гелио — Солнце), испытывающий сезонные колебания температуры. Средняя его мощность — около 30 м.

Ниже расположен еще более тонкий слой, характерной чертой которого является постоянная температура, соответствующая среднегодовой температуре места наблюдений. Глубина этого слоя увеличивается в условиях континентального климата.

Еще глубже в земной коре выделяется геотермический слой, температура которого определяется внутренним теплом Земли и с глубиной возрастает.

Увеличение температуры происходит главным образом за счет распада радиоактивных элементов, входящих в состав горных пород, прежде всего радия и урана.

Величину нарастания температуры горных пород с глубиной называют геотермическим градиентом. Он колеблется в довольно широких пределах — от 0,1 до 0,01 °С/м — и зависит от состава горных пород, условий их залегания и ряда других факторов. Под океанами температура с глубиной нарастает быстрее, чем на континентах. В среднем с каждыми 100 м глубины становится теплее на 3 °С.

Величина, обратная геотермическому градиенту, называется геотермической ступенью. Она измеряется в м/°С.

Тепло земной коры — важный энергетический источник.

Часть земной коры, простирающаяся ло глубин, доступных для геологического изучения, образует недра Земли. Недра Земли требуют особой охраны и разумного использования.

Состоит из множества слоев, нагромождающихся друг на друга. Однако лучше всего нам известны земная кора и литосфера. Это не удивляет - ведь мы не только обитаем на них, но и черпаем из глубин большинство доступных нам природных ресурсов. Но еще верхние оболочки Земли сохраняют миллионы лет истории нашей планеты и всей Солнечной системы.

Эти два понятия так часто встречаются в прессе и литературе, что вошли повседневный словарь современного человека. Оба слова используются для обозначения поверхности Земли или другой планеты - однако между понятиями есть разница, базирующаяся на двух принципиальных подходах: химическом и механическом.

Химический аспект - земная кора

Если разделять Землю на слои, руководствуясь различиями в химическом составе, верхним слоем планеты будет земная кора. Это относительно тонкая оболочка, заканчивающаяся на глубине от 5 до 130 километров под уровнем моря - океаническая кора тоньше, а континентальная, в районах гор, толще всего. Хотя 75% массы коры приходится только на кремний и кислород (не чистые, связанные в составе разных веществ), она отличается наибольшим химическим разнообразием среди всех слоев Земли.

Играет роль и богатство минералов - различных веществ и смесей, созданных за миллиарды лет истории планеты. Земная кора содержит не только «родные» минералы, которые были созданы геологическими процессами, но и массивное органическое наследие, вроде нефти и угля, а также инопланетные, включения.

Физический аспект - литосфера

Опираясь на физические характеристики Земли, такие как твердость или упругость, мы получим несколько иную картину - внутренности планеты будет укутывать литосфера (от др. греческого lithos, «скалистый, твердый» и «sphaira» сфера). Она намного толще земной коры: литосфера простирается до 280 километров вглубь и даже захватывает верхнюю твердую часть мантии!

Характеристики этой оболочки полностью соответствуют названию - это единственный, кроме внутреннего ядра, твердый слой Земли. Прочность, правда, относительная - литосфера Земли является одной из самых подвижных в Солнечной системе, из-за чего планета уже не раз изменяла свой внешний вид. Но для значительного сжатия, искривления и прочих эластических изменений требуются тысячи лет, если не больше.

  • Интересный факт - планета может и не обладать поверхностной корой. Так, поверхность - это его затвердевшая мантия; кору ближайшая к Солнцу планета потеряла давным-давно в результате многочисленных столкновений.

Подводя итог, земная кора - это верхняя, химически разнообразная часть литосферы, твердой оболочки Земли. Первоначально они обладали практически одинаковым составом. Но когда на глубины воздействовала только нижележащая астеносфера и высокие температуры, в формировании минералов на поверхности активно участвовали гидросфера, атмосфера, метеоритные остатки и живые организмы.

Литосферные плиты

Еще одна черта, которая отличает Землю от других планет - это разнообразие на ней разнотипных ландшафтов. Конечно, свою невероятно большую роль сыграли и вода, о чем мы расскажем немного позже. Но даже основные формы планетарного ландшафта нашей планеты отличаются от той же Луны. Моря и горы нашего спутника - это котлованы от бомбардировки метеоритами. А на Земле они образовались в результате сотен и тысяч миллионов лет движения литосферных плит.

О плитах вы уже наверняка слышали - это громадные устойчивые фрагменты литосферы, которые дрейфуют по текучей астеносфере, словно битый лед по реке. Однако между литосферой и льдом есть два главных отличия:

  • Прорехи между плитами небольшие, и быстро затягиваются за счет извергающегося с них расплавленного вещества, а сами плиты не разрушаются от столкновений.
  • В отличие от воды, в мантии отсутствует постоянное течение, которое могло бы задавать постоянное направление движения материкам.

Так, движущей силой дрейфа литосферных плит является конвекция астеносферы, основной части мантии - более горячие потоки от земного ядра поднимаются к поверхности, когда холодные опускаются обратно вниз. Учитывая то, что материки различаются в размерах, и рельеф их нижней стороны зеркально отражает неровности верхней, движутся они также неравномерно и непостоянно.

Главные плиты

За миллиарды лет движения литосферных плит они неоднократно сливались в суперконтиненты, после чего снова разделялись. В ближайшем будущем, через 200– 300 миллионов лет, тоже ожидается образование суперконтинента под именем Пангея Ультима. Рекомендуем посмотреть видео в конце статьи - там наглядно показано, как мигрировали литосферные плиты за последние несколько сотен миллионов лет. Кроме того, силу и активность движения материков определяет внутренний нагрев Земли - чем он выше, тем сильнее расширяется планета, и тем быстрее и свободнее движутся литосферные плиты. Однако с начала истории Земли ее температура и радиус постепенно снижаются.

  • Интересный факт - дрейф плит и геологическая активность не обязательно должны питаться от внутреннего самонагрева планеты. К примеру, спутник Юпитера, обладает множеством активных вулканов. Но энергию для этого дает не ядро спутника, а гравитационное трение с , из-за которого недра Ио разогреваются.

Границы литосферных плит весьма условны - одни части литосферы тонут под другими, а некоторые, как Тихоокеанская плита, вообще скрыты под водой. Геологи сегодня насчитывают 8 основных плит, которые покрывают 90 процентов всей площади Земли:

  • Австралийская
  • Антарктическая
  • Африканская
  • Евразийская
  • Индостанская
  • Тихоокеанская
  • Северо-Американская
  • Южно-Американская

Такое разделение появилось недавно - так, Евразийская плита еще 350 миллионов лет назад состояла из отдельных частей, во время слияния которых образовались Уральские горы, одни из самых древних на Земле. Ученые по сей день продолжают исследование разломов и дна океанов, открывая новые плиты и уточняя границы старых.

Геологическая активность

Литосферные плиты движутся очень медленно - они наползают друг друга со скоростью 1–6 см/год, и отдаляются максимально на 10-18 см/год. Но именно взаимодействие между материками создает геологическую активность Земли, ощутимую на поверхности - извержения вулканов, землетрясения и образование гор всегда происходят в зонах контакта литосферных плит.

Однако есть исключения - так называемые горячие точки, которые могут существовать и в глубине литосферных плит. В них расплавленные потоки вещества астеносферы прорываются наверх, проплавляя литосферу, что приводит к повышенной вулканической активности и регулярным землетрясениям. Чаще всего это происходит неподалеку от тех мест, где одна литосферная плита наползает на другую - нижняя, вдавленная часть плиты погружается в мантию Земли, повышая тем самым давление магмы на верхнюю плиту. Однако сейчас ученые склоняются к той версии, что «утонувшие» части литосферы расплавляются, повышая давление в глубинах мантии и создавая тем самым восходящие потоки. Так можно объяснить аномальную отдаленность некоторых горячих точек от тектонических разломов.

  • Интересный факт - в горячих точках часто образуются щитовые вулканы, характерные своей пологой формой. Они извергаются много раз, разрастаясь за счет текучей лавы. Также это типичный формат инопланетных вулканов. Самый известный из них на Марсе, самая высокая точка планеты - высота его достигает 27 километров!

Океаническая и континентальная кора Земли

Взаимодействие плит также приводит к формированию двух различных типов земной коры - океанической и континентальной. Поскольку в океанах, как правило, находятся стыки различных литосферных плит, их кора постоянно изменяется - разламывается или поглощается другими плитами. На месте разломов возникает непосредственный контакт с мантией, откуда поднимается раскаленная магма. Остывая под воздействием воды, она создает тонкий слой из базальтов - основной вулканической породы. Таким образом, океаническая кора полностью обновляется раз в 100 миллионов лет - самые старые участки, которые находятся в Тихом океане, достигают максимального возраста в 156–160 млн лет.

Важно! Океаническая кора - это не вся та земная кора, что находится под водой, а лишь ее молодые участки на стыке материков. Часть континентальной коры находится под водой, в зоне стабильных литосферных плит.

Возраст океанической коры (красный соответствует молодой коре, синий - старой).